ASSESSING LINEARPITY IN STRUCTURAL EQUATION MODELS THROUGH GRAPhICS

WORKING PAPER
3.203

1 Dipartimento di Scienze Economiche, Università degli Studi di Cassino, porzio@eco.unicas.it
2 Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno, mvitale@unisa.it
Index

1. Introduction ... 5
2. Testing linearity against nonlinearity in SEMs 6
3. A graphical tool to evaluate linearity in SEMs:
 the latent joint effect plot ... 8
 3.1 The joint effect plot for two latent covariates 9
 3.2 The latent joint effect plot for more than
 two latent covariates .. 12
4. An illustrative example .. 14
5. Concluding remarks .. 18

References
Abstract
While Structural Equation Models (SEMs) generally assume linear linkages between variables, it is a well-worn issue that this may not adequately describe the complexity and richness of social phenomena. For this reason, nonlinear SEMs that include interaction effects between latent factors have been developed. However, while a large literature is available on methods for their estimation, few efforts have been devoted to the development of adequate diagnostic tools. In particular, the use of graphics has been rather limited so far, probably because of the partial information provided by the SEM residuals. Hence, with this paper we introduce a graphical device which aims to evaluate the SEM linearity assumption, without any previous estimation of nonlinear models. Specifically, we define a series of plots based on the individual latent variable scores in order to investigate nonlinear effects involving latent variables. In doing so, we also highlight the potential for graphical tools within SEM when factor scores for each individual in the sample are visualized. We call our graphical device the latent joint effect plot, as it displays the joint effect of two latent variables on some other response variable. The idea is presented through both simulated data and an illustrative example regarding the determinants that lead high school students to drop out of the Italian education system.

Keywords
Graphical diagnostic, Interaction term, Latent joint effect plot, Nonlinear effects
1. Introduction

Over the past few decades, Structural Equation Models (SEMs) have been increasingly applied in order to analyze causal relationships between theoretical latent concepts in many research areas. Generally speaking, SEM analysis can be summarized in the following steps. First, the researcher specifies a tentative initial model. Then, if it does not fit the data, the model is modified taking into account both the data and its substantive meaning. Several models may be tested in this process, where the specification of each model may be theory or data driven. Within this context, Joreskög (1993) described a possible strategy for data analysis: i) specify an initial model; ii) estimate the measurement and then its structural equation part; iii) evaluate the model’s goodness-of-fit; iv) modify it according to the goodness-of-fit results (setting some parameter equal to zero if the model is over fitted, or looking for some model modification that leads to a better fit); repeat steps i)-iv) until a reasonable model is found. In this trial-and-error process, one possibility is to verify whether or not the assumption of linear linkages between the latent variables holds. The idea is that the model may not fit the data because the relationships between the social phenomena under study are substantially not linear. Nonlinearities may be modelled in many ways, and in this paper we focus on interaction effects within the structural part of SEMs. That is, we consider the case of two latent variables interacting with each other when explaining the pattern of some endogenous variable. In some case, interaction effects are assumed on the basis of theoretical sociological hypotheses. An interaction model is estimated, and the existence of nonlinearity is evaluated through statistical tests. However, before estimating an interaction model, one may wonder if the interaction is in some way justified by the data: a modus operandi that may be particularly profitable in view of the lack of consensus in the literature on the approach which provides the optimal method of estimation. Marsh et al. (2004) reported a trade-off between accessibility, simplicity, bias, precision, power, and Type I error rate when choosing an estimation method for interaction models.
For this reason, in this paper we present a graphical device which aims to evaluate the linearity assumption, without any previous estimation of nonlinear models. We present a series of plots, which we call latent joint effect plots, that make it possible to check for the presence of interaction effects between latent variables. Offering this new graphical tool to SEM users is more than worthwhile: with our proposal we aim at encouraging social researcher to a larger use of graphics in SEM. We not only believe that statistical graphics is an undeveloped area in sociological practice (as claimed by Becker 2000), but more specifically that the SEM community may profitably develop and employ proper graphical tools if it learns to exploit latent variable factor scores to visually analyze SEM model outputs.

The paper is organised as follows. In section 2 the approaches dealing with nonlinear latent variable relationships are briefly reviewed, while in section 3 our graphical tool is presented and discussed with simulated data. In sections 4 and 5 respectively, an illustrative example and some concluding remarks are reported.

2. Testing linearity against nonlinearity in SEMs

In brief, SEMs combine a causal model between latent variables with a measurement model of latent factors through their observed indicators (Joreskög, 1970; Bollen, 1989). Formally, the causal relationships between latent factors are described by the equation:

\[\eta = B\eta + \Gamma \xi + \zeta \]

(1)

where \(\eta \) is the vector of latent endogenous variables, \(\xi \) is the vector of latent exogenous variables, \(B \) is the coefficient matrix for the effects of \(\eta \) on every other latent endogenous variable, \(\Gamma \) is the coefficient matrix that shows the influence of \(\xi \) on \(\eta \) and \(\zeta \) is the disturbance terms vector.

The measurement part for the observed exogenous and endogenous indicators is defined through the following two equations:

\[y = \Lambda_y \eta + \epsilon \]

(2)

\[x = \Lambda_x \xi + \delta \]

(3)

where \(y \) and \(x \) are the vectors of observed indicators that measure the latent variables \(\eta \) and \(\xi \), respectively; \(\Lambda_y \) and \(\Lambda_x \) are the coefficient
matrices relating y to η and x to ξ; ϵ and δ are the measurement error vectors for y and x.

An SEM model is specified following some hypotheses. In this paper, we focus on the assumption of linear relationships between latent variables. Specifically, we consider the case of two (or more) latent variables interacting with each other when explaining the pattern of some endogenous variables.

The classic approach to verify whether a model with latent interaction terms fits the data relies on hypothesis testing theory and a null linear model is tested against some alternative interaction effect model. The statistical significance of each interaction parameter and/or the overall fit of the model can be evaluated. In particular, chi-square test and fit indexes are used to verify whether the interaction hypotheses are supported.

However, two open issues arise. First, there is no agreement on how to estimate an SEM model with latent interaction effect. Secondly, these models implicitly violate the normality assumption (products of normally distributed variables do not have a normal distribution), and hence the test statistic distributions need to be adapted to nonlinearity.

Several strategies to estimate latent interaction effect are discussed in the SEM literature. Kenny and Judd (1984) suggested modelling interactions between latent variables by means of the product of observed indicators. This idea has been further investigated by many authors. Jaccard and Wan (1995) extend Kenny and Judd’s procedure by defining a multiple product indicators approach, while Jöreskog and Yang (1996) make a proposal to rely on a single product indicator (see also: Saris et al., 2007). Others exploit a two-step technique in order to estimate interaction terms (Ping, 1996; Bollen, 1996; Bollen, Paxton 1998) or a multi-group approach if one or both of the latent interacting variables are discrete (Rigdon et al., 1998; Reinecke, 2002). Alternatively, Jonsson (1998) and later Jöreskog (2000) suggest analyzing the interaction directly by the product of the exogenous latent variable scores. The latter approach has been compared with the traditional product indicant technique in Schumacker (2002), and has been used as a starting point for clustering municipalities in an applied study in regional development framework (Cziraky et al., 2006). If only a single indicator for each
latent variable is defined, the corrected covariance matrices approach is also available (Bollen, 1989, chap.9). Once an interaction model has been estimated, the second issue arises. Classic test statistic distributions are based on the multivariate normality assumption of the indicators. However, the presence of latent interaction effects implies a departure from this specification hypothesis (Moosbrugger et al., 1997; Raykov, Penev 1997; Tomarken, Waller 2005). Estimation methods, based on the multivariate normality assumption (such as maximum likelihood), provide non-robust results for non-normal data (Bollen, 1989), while the asymptotically distribution-free estimation procedure (Browne, 1984; Satorra, 1990) requires large sample size to exploit asymptotical unbiasedness. In response, the latent moderated structural equations estimation method has been developed dealing with the methodological problems of non-normally distributed variables in latent interaction models (Klein, Moosbrugger 2000). It provides unbiased estimates of standard errors, although some drawbacks remain when many interacting variables and many observed indicators are involved in the model. Klein and Muthén (2007) developed the Quasi Maximum Likelihood estimation method to deal with computational effectiveness in case of complex model. However, the corresponding quasi-likelihood ratio test also relies on asymptotic results.

In brief, while latent interactions are a very active area of research (Batista et al. 2004; Song, Lee 2006; Little et al., 2006; Saris et al., 2007), little effort has been devoted to the development of strategies for the assessment of their presence from a diagnostic perspective.

3. A graphical tool to evaluate linearity in SEMs: the latent joint effect plot

As mentioned above, we agree with the Becker’s 2000 claim that although graphical methods play an important role in all aspects of data analysis, statistical graphics are still an undeveloped area in sociological practice (Becker 2000). In particular, we noticed that graphical tools are not often exploited in SEMs. One of the reasons may be that graphical devices in SEM are based on the covariance residuals, that is on the difference between the observed covariances and those implied by the model. These
residuals signal if the estimated model does not fit the data, but they are unable to lead the researcher to easily discover ways of improving the model fit. Alternatively, we suggest to introduce graphical devices based on the factor scores for each individual in the sample, which may identify more exploitable information. As an example, in this paper we offer a graphical tool, the latent joint effect plot, which is based on the scores of the latent variables for individual observations and allows a visual evaluation of the linearity assumption in the structural part of an SEM. The device we propose is in line with the graphical diagnostics used in the framework of multiple linear regression (Cook, Weisberg, 1989, 1999; Cook, 1998). In particular, the plot belongs to the framework of the conditional plot (known also as ‘coplot’, Cleveland, 1993: chapters 4 and 5), and is included in the class of the graphs used for model adequacy and assumption verification, according to the taxonomy provided by Snee and Pfeifer (2006).

Finally, we note that several methods are available for estimating the values of factor scores in SEMs, each of which may provide different values for each individual. In practice, however, estimates obtained using the different estimation methods are highly correlated (Bollen, 1989; p. 105), and hence any of them can be safely used for diagnostic purposes. For simplicity’s sake, in this work, we compute the factor scores according to the method described in detail in Joreskog (2000) and implemented in Lisrel 8.30.

3.1 The joint effect plot for two latent covariates

The latent joint effect plot is a general device that works for any number of latent variables in a model. However, for the sake of illustration, we first present it for a model with two exogenous latent variables, $ξ_1$ and $ξ_2$, and one endogenous latent variable $η_1$. Let us assume, then, that $η_1$ depends only on $ξ_1$ and $ξ_2$, and we wish to examine the presence of an interaction effect between $ξ_1$ and $ξ_2$ in explaining $η_1$. Furthermore, let $\hat{η}_i$ and $\hat{ξ}_j$ be the estimated factor scores for $η_i$ and $ξ_j$, respectively. Our latent joint effect plot will then be drawn according to the following steps:
1. Choose which latent exogenous variable is to be considered as a moderator variable (say ξ_2);
2. Draw the scatterplot of $\hat{\eta}_1$ against $\hat{\xi}_1$;
3. Divide the moderator latent variable scores $\hat{\xi}_2$ into an appropriate number k of groups;
4. Estimate k regression lines of $\hat{\eta}_1$ against $\hat{\xi}_1$, one for each group defined for $\hat{\xi}_2$;
5. Superimpose the k regression lines estimated at step 4 onto the scatterplot of $\hat{\eta}_1$ against $\hat{\xi}_2$ obtained at step 2.

The steps described before produce a *latent joint effect plot* of ξ_1 and ξ_2 over η_1: a scatterplot with some superimposed regression lines appears. If some interaction is present, the regression lines will intersect, having different intercepts and slopes. Vice versa, if the interaction is not present (i.e. the linearity assumption holds), these regression lines will be parallel, differing only in the intercepts. Finally, coincident lines in the plot suggest that the moderator variable should be excluded from the model. This fact can be easily proved, following the scheme given in Porzio and Vitale (2006, Appendix A).

In order to exemplify this, two different simulated datasets have been generated with two exogenous latent variables, ξ_1 and ξ_2, each measured by three observed indicators normally distributed. In the first dataset, the endogenous latent variable η_1 is defined as a linear combination of the two exogenous latent variables (Equation 4):

$$\eta_1 = \alpha_1 + \gamma_{11} \hat{\xi}_1 + \gamma_{12} \hat{\xi}_2 + \zeta_1$$

where α_1 is an intercept term, γ_{11}, γ_{12} are the two coefficients related to the linear effects of ξ_1 and ξ_2 on η_1 and ζ_1 is a normal distributed disturbance term.

Figure 1a shows the *latent joint effect plot* performed by the first simulated dataset. In particular, the plot highlights the scatterplot of the factor scores $\hat{\eta}_1$ against the factor scores $\hat{\xi}_2$, with four regression lines estimated over four groups of the $\hat{\xi}_2$ scores. The first group accounts for the first 25% of the scores, the second for the scores between the 25-th and the 50-th percentiles, and so on. In line with
the generated data, the parallel lines in Figure 1 emphasize that in this case linearity holds.

In the second simulated dataset, keeping ξ_1 and ξ_2 from the previous example, the endogenous latent variable η_2 is generated according to the model:

$$
\eta_2 = \alpha_2 + \gamma_{21}\xi_1 + \gamma_{22}\xi_2 + \delta \cdot \xi_1\xi_2 + \zeta_2
$$

(5)

where α_2 is an intercept term, γ_{21}, γ_{22} are the two coefficients related to the linear effects of ξ_1 and ξ_2 on η_2, δ is the product term’s coefficient and ζ_2 is a normal distributed disturbance term. Figure 2 shows the latent joint effect plot performed by this second dataset. The four regression lines clearly intersect, correctly suggesting the presence of a nonlinear relationship between ξ_1 and ξ_2 in the explanation of the η_2 pattern.

Figure 1. Latent joint effect plot with two latent covariates ξ_1 and ξ_2 and one endogenous variable η_1, each measured by three observed continuous indicators. Scatterplot of the factor scores $\hat{\eta}_1$ against the factor scores $\hat{\xi}_1$, with four regression lines estimated over four groups of the moderator $\hat{\xi}_2$. Parallel lines signal that interaction between ξ_1 and ξ_2 in the explanation of the η_1 pattern is absent.

Figure 2. Latent joint effect plot with two latent covariates ξ_1 and ξ_2 and one endogenous variable η_2, each measured by three observed continuous indicators. Scatterplot of the factor scores $\hat{\eta}_2$ against the factor scores $\hat{\xi}_1$, with four regression lines estimated over four groups of the moderator $\hat{\xi}_2$ scores. Intersecting lines signal that some interaction is present between ξ_1 and ξ_2 in the explanation of the η_2 pattern.
3.2 The latent joint effect plot for more than two latent covariates

When the number of latent variables increases, the simple plot described in Section 3.1 is not appropriate for our purposes. If the model includes more than two covariates, the whole latent factor joint distribution must be taken into account. A kind of 'net effect plot' (Cook, 1998, chap. 13) needs to be defined, so that the interaction effect of two covariates can be evaluated given the effect of the other remaining variables.

In order to achieve this, the factor scores have to be displayed in a residual space. Specifically, let \(R \) be the set of all latent covariates included in the model that explains \(\eta_i \) except the ones (say \(\xi_j \) and \(\xi_{j+1} \)) for which an interaction effect is suspected. Then, our residual space will be spanned by the residual of the regression of \(\eta_i \) against \(R - c(\eta_i/R) \), and the residual of the regression of \(\xi_j \) against \(R - c(\xi_j/R) \). In brief, with \(\hat{R} \) the estimated factor scores corresponding to \(R \), the latent joint effect plot will be drawn according to the following steps:

1. Choose which latent covariate is to be considered as the moderator variable (say \(\xi_j \));
2. Compute the OLS residuals \(c(\hat{\eta}_i/\hat{R}) \) from the linear regression of \(\hat{\eta}_i \) vs. \(\hat{R} \), and the OLS residuals \(c(\hat{\xi}_j/\hat{R}) \) from the linear regression of \(\hat{\xi}_j \) vs. \(\hat{R} \);
3. Draw the scatterplot of \(c(\hat{\eta}_i/\hat{R}) \) against \(c(\hat{\xi}_j/\hat{R}) \);
4. Divide the latent variable scores \(\hat{\xi}_{j+1} \) into an appropriate number \(k \) of groups;
5. Estimate \(k \) regression lines of \(c(\hat{\eta}_i/\hat{R}) \) against \(c(\hat{\xi}_j/\hat{R}) \), one for each group of \(\hat{\xi}_{j+1} \);
6. Superimpose the \(k \) regression lines estimated at step 5 onto the plot obtained at step 3.
The regression lines estimated on different grouped scores of the moderator variable ξ_{j+1} will highlight the presence of any interaction effect ξ_j and ξ_{j+1} on η_3: intersecting lines will suggest interaction.

For the sake of illustration, an example is offered to the reader. A simulated data set has been generated in order to specify a model with three exogenous variables, ξ_1, ξ_2, and ξ_3 and one endogenous variable η_3, each measured by three observed continuous indicators. The endogenous variable is derived so that the latent exogenous variables and an interaction term involving ξ_1 and ξ_2 enter the structural equation (Equation 6):

$$\eta_3 = \alpha_3 + \gamma_3 \xi_1 + \gamma_2 \xi_2 + \gamma_3 \xi_3 + \delta_3 \xi_1 \xi_2 + \zeta_3$$ \hspace{1cm} (6)

The corresponding latent joint effect plots are displayed in Figure 3. According to the simulated data, the presence of an interaction effect is only visualized in the latent joint effect plot displayed in Figure 3a, which shows the effect of ξ_1 and ξ_2 on η_3, fixing the effects of ξ_3: the intersecting lines clearly highlight some nonlinearity. In the other plots (Figures 3b and 3c), which evaluate respectively the joint effect of $\xi_1 - \xi_3$ and $\xi_2 - \xi_3$ in the explanation of η_3, parallel regression lines point out that no more interactions are present.

Figure 3a. Scatterplot of the OLS residuals $e(\hat{\eta}_3/\hat{\xi}_1)$ against the OLS residuals $e(\hat{\eta}_3/\hat{\xi}_3)$, with four regression lines estimated over four groups of the moderator $\hat{\xi}_2$ factor scores. The intersecting lines clearly highlight some nonlinearity between $\hat{\xi}_1$ and $\hat{\xi}_2$ on η_3, given the effect of $\hat{\xi}_3$.

13
4. An illustrative example

In order to illustrate how the proposed graphical procedure may work in practice, we analyze a causal model which aims to describe how some latent factors lead high school students to drop out of the Italian education system. We note that there is not a single measure available for measuring high school dropping out in Italy. Hence, dropping out is by itself a latent variable.

To this end, we analyze a sub-model of the SEM developed by Ragozini and Vitale (2006). We include the following latent factors: *family structure*, *socio-economic context*, *education system*, and *high school dropping out*. The statistical units under examination are the Italian Provinces (i.e. administrative units). Each of the four latent variables are measured by three observed indicators. The socio-economic context is measured by two indicators of wealth and one of schooling; the family structure through indicators related to separations and divorces; the education system by some measures of
teacher experience and turn-over; the dropping-out by some student failure and delay indicators. Further details are in Ragozini and Vitale (2006).

In Figure 4, we present the hypothesized structural relationships among the latent factors in our sub-model. *Dropping out* (*Dropout*) depends directly and positively upon inexperienced teachers (*EduSystem*), and family break-up (*Family*), while the socio-economic context (*Context*) has both a negative direct and indirect effect on dropping out.

If linearity is assumed, the corresponding structural equations will be:

\[
\begin{align*}
\text{EduSystem} &= \alpha_1 + \gamma_{11}\text{Context} + \zeta_1 \\
\text{Dropout} &= \alpha_2 + \gamma_{21}\text{Context} + \gamma_{22}\text{Family} + \beta_{21}\text{EduSystem} + \zeta_2
\end{align*}
\]

We will then use our latent joint effect plot to evaluate this assumption. Given the hypothesized relationships, three plots suffice to investigate the presence of any interaction effect, as only the second structural equation may admit interactions, and that it has three latent terms. Figures 5a, 5b and 5c show these latent joint effect plots for the interaction of education system and family, context and family, education system and context, respectively.\(^1\)

The intersecting regression lines in Figure 5a, estimated over the two groups of the moderator variable family, highlight the presence of some interaction effects.

In Figure 5b, the lines are substantially parallel, while Figure 5c suggests some possible interaction. In brief, a stronger interaction between education system and family, and a smaller interaction between education system and context appear.

Finally, we perform a confirmative analysis to investigate to what extent the detected nonlinear relationships exist. For the sake of simplicity, we estimate path models on the factor scores. First, a full model that adds three latent product terms to the model in equation (8) is estimated: only the product term coefficient of education system and family turns out to be significant on the basis of the corresponding

\(^1\) In the Figures 5a, 5b and 5c the continuous lines are estimated over the lower values of the moderator variable, while the dashed line over the higher values.
A likelihood ratio test is then performed to further investigate this interaction effect. The model with this interaction term and the three additive terms has $\chi^2 = 14.42$, df = 11, while the model without the interaction has $\chi^2 = 22.36$, df = 10. The Chi-square difference supports the interaction revealed by the *latent joint effect plot* of Figure 5a.

Figure 4. Theoretical path diagram for dropping out in high school.

Figure 5a. *Latent joint effect plot* of Education System and Family on Dropout, after the effect of Context. Scatterplot of the OLS residuals $e(Dropout/Context)$ against the OLS residuals $e(EduSystem/Context)$, with regression lines estimated over two groups of the moderator variable Family. The intersecting regression lines highlight the presence of some interaction effects.
Figure 5b. Latent joint effect plot of Context and Family on Dropout, after the effect of Education System. Scatterplot of the OLS residuals $e(Dropout/EduSystem)$ against the OLS residuals $e(Context/EduSystem)$, with regression lines estimated over two groups of the moderator variable Family. The parallel lines signal that interaction is absent.

Figure 5c. Latent joint effect plot of Education System and Context on Dropout, after the effect of Family. Scatterplot of the OLS residuals $e(Dropout/Family)$ against the OLS residuals $e(EduSystem/Family)$, with regression lines estimated over two groups of the moderator variable Context. The quite parallel lines suggest some possible interaction.
5. Concluding Remarks

Graphical tools based on factor scores can profitably support the specification phase of an SEM. In particular, in this paper we have illustrated how to detect the presence of interaction effects through the latent joint effect plot, a graphical diagnostic device we introduced. The plot is designed to evaluate whether the linearity assumption on the relationship between latent variable holds. In particular, it makes it possible to check for the presence of any interaction effect between latent covariates. Besides its effectiveness, this tool has the advantage of assessing linearity without the previous estimation of any nonlinear model.

There are some precursors to the graphical device discussed in this paper. In multiple linear regression, plotted regression lines over different values of the moderator variable may highlight interaction between pairs of predictors (see e.g. Jaccard et al, 1990a, 1990b; Aiken and West 1991). However, these plots do not take into account the presence of others terms in the regression equation. In path models, Porzio and Vitale (2006) introduced a joint effect plot as an exploratory tool to evaluate whether non linear linkages between observed variables are actually present. In SEMs, Klein and Stoolmiller (2003), within an application on behavioural research, screened the data for an interaction effect through a series of scatterplots based on some observed indicators. However, their idea is suitable if the model involves few variables, and the nonlinear effect can be foreseen by a research hypothesis.

Finally, we note that the name latent joint effect plot recalls the effect display proposed by Fox (1987). However, our plot is a diagnostic device to be used while specifying a model, whereas Fox’s plot is a tool for displaying the results of an analysis, given that a model has been correctly specified.
References
interaction and quadratic effects.”, *Multivariate Behavioral Research*, in press.

Raykov, T., S. Penev 1997. “Structural equation modeling and the latent linearity hypothesis in social and behavioral research.” *Quality & Quantity* 31: 57-78.

Saris, Willem E., Joan Manuel Batista-Foguet and Germà Coenders 2007. “Selection of Indicators for the Interaction Term in

1988, 3.1 Guido CELLA
Linkages e moltiplicatori input-output.

1989, 3.2 Marco MUSELLA
La moneta nei modelli di inflazione da conflitto.

1989, 3.3 Floro E. CAROLEO
Le cause economiche nei differenziali regionali del tasso di disoccupazione.

1989, 3.4 Luigi ACCARINO
Attualità delle illusioni finanziarie nella moderna società.

1989, 3.5 Sergio CESARATTO
La misurazione delle risorse e dei risultati delle attività innovative: una valutazione dei risultati dell'indagine CNR-ISTAT sull'innovazione tecnologica.

1990, 3.6 Luigi ESPOSITO - Pasquale PERSICO
Sviluppo tecnologico ed occupazionale: il caso Italia negli anni '80.

1990, 3.7 Guido CELLA
Matrici di contabilità sociale ed analisi ambientale.

1990, 3.8 Guido CELLA
Linkages e input-output: una nota su alcune recenti critiche.

1990, 3.9 Concetto Paolo VINCI
I modelli econometrici sul mercato del lavoro in Italia.

1990, 3.10 Concetto Paolo VINCI
Il dibattito sul tasso di partecipazione in Italia: una rivisitazione a 20 anni di distanza.

1990, 3.11 Giuseppina AUTIERO
Limiti della coerenza interna ai modelli con la R.E.H..

1990, 3.12 Gaetano Fausto ESPOSITO
Evoluzione nei distretti industriali e domanda di istituzione.

1990, 3.13 Guido CELLA
Measuring spatial linkages: input-output and shadow prices.

1990, 3.14 Emanuele SALSANO
Seminari di economia.
<table>
<thead>
<tr>
<th>Year</th>
<th>Page</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>3.16</td>
<td>Alessandro PETRETTO- Giuseppe PISAURO</td>
<td>Uniformità vs selettività nella teoria della ottima tassazione e dei sistemi tributari ottimali.</td>
</tr>
<tr>
<td>1990</td>
<td>3.18</td>
<td>Pasquale PERSICO</td>
<td>Il Mezzogiorno e le politiche di sviluppo industriale.</td>
</tr>
<tr>
<td>1990</td>
<td>3.19</td>
<td>Pasquale PERSICO</td>
<td>Priorità delle politiche strutturali e strategie di intervento.</td>
</tr>
<tr>
<td>1990</td>
<td>3.20</td>
<td>Adriana BARONE - Concetto Paolo VINCI</td>
<td>La produttività nella curva di Phillips.</td>
</tr>
<tr>
<td>1991</td>
<td>3.23</td>
<td>Maria SCATTAGLIA</td>
<td>La stima empirica dell'offerta di lavoro in Italia: una rassegna.</td>
</tr>
<tr>
<td>1991</td>
<td>3.24</td>
<td>Giuseppe CELI</td>
<td>La teoria delle aree valutarie: una rassegna.</td>
</tr>
<tr>
<td>1991</td>
<td>3.27</td>
<td>Giuseppe MARIGLIANO</td>
<td>La formazione del prezzo nel settore dell'intermediazione commerciale.</td>
</tr>
<tr>
<td>1991</td>
<td>3.28</td>
<td>Maria PROTO</td>
<td>Risorse naturali, merci e ambiente: il caso dello zolfo.</td>
</tr>
<tr>
<td>1991</td>
<td>3.29</td>
<td>Salvatore GIORDANO</td>
<td>Ricerca sullo stato dei servizi nelle industrie del salemitano.</td>
</tr>
</tbody>
</table>
1992, 3.30 Antonio LOPES
Crisi debitoria e politiche macroeconomiche nei paesi in via di sviluppo negli anni 80.

1992, 3.31 Antonio VASSILLO
Circuiti economici semplici, complessi, ed integrati.

1992, 3.32 Gaetano Fausto ESPOSITO
Imprese ed istituzioni nel Mezzogiorno: spunti analitici e modalità di relazione.

1992, 3.33 Paolo COCCORESE
Un modello per l’analisi del sistema pensionistico.

1994, 3.34 Aurelio IORI
Il comparto dei succhi di agrumi: un caso di analisi interorganizzativa.

1994, 3.35 Nicola POSTIGLIONE
Analisi multicriterio e scelte pubbliche.

1994, 3.36 Adriana BARONE
Cooperazione nel dilemma del prigioniero ripetuto e disoccupazione involontaria.

1994, 3.37 Adriana BARONE
Le istituzioni come regolarità di comportamento.

1994, 3.38 Maria Giuseppina LUCIA
Lo sfruttamento degli idrocarburi offshore tra sviluppo economico e tutela dell’ambiente.

1994, 3.39 Giuseppina AUTIERO
Un’analisi di alcuni dei limiti strutturali alle politiche di stabilizzazione nei LCDs.

1994, 3.40 Bruna BRUNO
Modelli di contrattazione salariale e ruolo del sindacato.

1994, 3.41 Giuseppe CELI
Cambi reali e commercio estero: una riflessione sulle recenti interpretazioni teoriche.

1995, 3.42 Alessandra AMENDOLA, M. Simona ANDREANO
The TAR models: an application on italian financial time series.

1995, 3.43 Leopoldo VARRIALE
Ambiente e turismo: Parco dell’Iguazù - Argentina.
1995, 3.44 A. PELOSI, R. LOMBARDI
Fondi pensione: equilibrio economico-finanziario delle imprese.

1995, 3.45 Emanuele SALSANO, Domenico IANNONE
Economia e struttura produttiva nel salernitano dal secondo dopoguerra ad oggi.

1995, 3.46 Michele LA ROCCA
Empirical likelihood and linear combinations of functions of order statistics.

1995, 3.47 Michele LA ROCCA
L’uso del bootstrap nella verosimiglianza empirica.

1996, 3.48 Domenico RANESI
Le politiche CEE per lo sviluppo dei sistemi locali: esame delle diverse tipologie di intervento e tentativo di specificazione tassonomica.

1996, 3.49 Michele LA ROCCA
L’uso della verosimiglianza empirica per il confronto di due parametri di posizione.

1996, 3.50 Massimo SPAGNOLO
La domanda dei prodotti della pesca in Italia.

1996, 3.51 Cesare IMBRIANI, Filippo REGANATI
Macroeconomic stability and economic integration. The case of Italy.

1996, 3.52 Annarita GERMANI
Gli effetti della mobilizzazione della riserva obbligatoria. Analisi sull’efficienza del suo utilizzo.

1996, 3.53 Massimo SPAGNOLO
A model of fish price formation in the north sea and the Mediterranean.

1996, 3.54 Fernanda MAZZOTTA
RTFL: problemi e soluzioni per i dati Panel.

1996, 3.55 Angela SPAGNUOLO
Concentrazione industriale e dimensione del mercato: il ruolo della spesa per pubblicità e R&D.

1996, 3.56 Giuseppina AUTIERO
The economic case for social norms.

1996, 3.57 Francesco GIORDANO
Sulla convergenza degli stimatori Kernel.

1996, 3.58 Tullio JAPPELLI, Marco PAGANO
The determinants of saving: lessons from Italy.
1997, 3.59 Tullio JAPPELLI
The age-wealth profile and the life-cycle hypothesis: a cohort analysis with a time series of cross sections of Italian households.

1997, 3.60 Marco Antonio MONACO
La gestione dei servizi di pubblico interesse.

1997, 3.61 Marcella ANZOLIN
L’albero della qualità dei servizi pubblici locali in Italia: metodologie e risultati conseguiti.

1997, 3.62 Cesare IMBRIANI, Antonio LOPES
Intermediazione finanziaria e sistema produttivo in un’area dualistica. Uno studio di caso.

1997, 3.63 Tullio JAPPELLI
Risparmio e liberalizzazione finanziaria nell’Unione europea.

1997, 3.64 Alessandra AMENDOLA
Analisi dei dati di sopravvivenza.

1997, 3.65 Francesco GIORDANO, Cira PERNIA
Gli stimatori Kernel per la stima non parametrica della funzione di regressione.

1997, 3.66 Biagio DI SALVIA
Le relazioni marittimo-commerciali nell’imperiale regio litorale austriaco nella prima metà dell’800. I. Una riclassificazione delle Tafeln zur Statistik der Österreicischen Monarchie.

1997, 3.67 Alessandra AMENDOLA
Modelli non lineari di seconda e terza generazione: aspetti teorici ed evidenze empiriche.

1998, 3.68 Vania SENA
L’analisi econometrica dell’efficienza tecnica. Un’applicazione agli ospedali italiani di zona.

1998, 3.69 Domenico CERBONE
Investimenti irreversibili.

1998, 3.70 Antonio GAROFALO
La riduzione dell’orario di lavoro è una soluzione al problema disoccupazione: un tentativo di analisi empirica.

1998, 3.71 Jacqueline MORGAN, Roberto RAUCCI
New convergence results for Nash equilibria.
Rosa FERRENTINO

1998, 3.72

Niels Henrik Abel e le equazioni algebriche.

1998, 3.73

Marco MICOCCHI, Rosa FERRENTINO

Un approccio markoviano al problema della valutazione delle opzioni.

1998, 3.74

Rosa FERRENTINO, Ciro CALABRESE

Rango di una matrice di dimensione K.

1999, 3.75

Patrizia RIGANTI

L’uso della valutazione contingente per la gestione del patrimonio culturale: limiti e potenzialità.

1999, 3.76

Annamaria NESE

Il problema dell’inefficienza nel settore dei musei: tecniche di valutazione.

1999, 3.77

Gianluigi COPPOLA

Disoccupazione e mercato del lavoro: un’analisi su dati provinciali.

1999, 3.78

Alessandra AMENDOLA

Un modello soglia con eteroschedasticità condizionata per tassi di cambio.

1999, 3.79

Rosa FERRENTINO

Su un’applicazione della trasformata di Laplace al calcolo della funzione asintotica di non rovina.

1999, 3.80

Rosa FERRENTINO

Un’applicazione della trasformata di Laplace nel caso di una distribuzione di Erlang.

1999, 3.81

Angela SPAGNUOLO

Efficienza e struttura degli incentivi nell’azienda pubblica: il caso dell’industria sanitaria.

1999, 3.82

Antonio GAROFALO, Cesare IMBRIANI, Concetto Paolo VINCI

Youth unemployment: an insider-outsider dynamic approach.

1999, 3.83

Rosa FERRENTINO

Un modello per la determinazione del tasso di riequilibrio in un progetto di fusione tra banche.

1999, 3.84

DE STEFANIS, PORZIO

Assessing models in frontier analysis through dynamic graphics.

1999, 3.85

Annunziato GESUALDI

Inflazione e analisi delle politiche fiscali nell’U.E.

1999, 3.86

R. RAUCCI, L. TADDEO

Dalle equazioni differenziali alle funzioni e^x, log x, a^x, log ax, x^a.
1999, 3.87 Rosa FERRENTINO
Sulla determinazione di numeri aleatori generati da equazioni algebriche.

1999, 3.88 C. PALMISANI, R. RAUCCI
Sulle funzioni circolari: una presentazione non classica.

2000, 3.89 Giuseppe STORTI, Pierluigi FURCOLO, Paolo VILLANI
A dynamic generalized linear model for precipitation forecasting.

2000, 3.90 Rosa FERRENTINO
Un procedimento risolutivo per l’equazione di Dickson.

2000, 3.91 Rosa FERRENTINO
Un’applicazione della mistura di esponenziali alla teoria del rischio.

2000, 3.92 Francesco GIORDANO, Michele LA ROCCA, Cira PERNA
Bootstrap variance estimates for neural networks regression models.

2000, 3.93 Alessandra AMENDOLA, Giuseppe STORTI
A non-linear time series approach to modelling asymmetry in stock market indexes.

2000, 3.94 Rosa FERRENTINO
Sopra un’osservazione di De Vylder.

2000, 3.95 Massimo SALZANO
Reti neurali ed efficacia dell’intervento pubblico: previsioni dell’inquinamento da traffico nell’area di Villa S. Giovanni.

2000, 3.96 Angela SPAGNUOLO
Concorrenza e deregolamentazione nel mercato del trasporto aereo in Italia.

2000, 3.97 Roberto RAUCCI, Luigi TADDEO
Teoremi ingannevoli.

2000, 3.98 Francesco GIORDANO
Una procedura per l’inizializzazione dei pesi delle reti neurali per l’analisi del trend.

2001, 3.99 Angela D’ELIA
Some methodological issues on multivariate modelling of rank data.

2001, 3.100 Roberto RAUCCI, Luigi TADDEO
Nuove classi di funzioni scalari quasiconcave generalizzate: caratterizzazioni ed applicazioni a problemi di ottimizzazione.

2001, 3.101 Adriana BARONE, Annamaria NESE
Some insights into night work in Italy.

2001, 3.102 Alessandra AMENDOLA, Marcella NIGLIO
Predictive distributions of nonlinear time series models.

2001, 3.103 Roberto RAUCCI
Sul concetto di certo equivalente nella teoria HSSB.

2001, 3.104 Roberto RAUCCI, Luigi TADDEO
On stackeberg games: a result of unicity.

2001, 3.105 Roberto RAUCCI
Una definizione generale e flessibile di insieme limitato superioremente in \mathbb{R}

2001, 3.106 Roberto RAUCCI
Stretta quasiconcavità nelle forme funzionali flessibili.

2001, 3.107 Roberto RAUCCI
Sugli insiemi limitati in \mathbb{R}^m rispetto ai coni.

2001, 3.108 Roberto RAUCCI
Monotonie, isotonie e indecomponibilità deboli per funzioni a valori vettoriali con applicazioni.

2001, 3.109 Roberto RAUCCI
Generalizzazioni del concetto di debole Kuhn-Tucker punto-sella.

2001, 3.110 Antonia Rosa GURRIERI, Marilene LORIZIO
Le determinanti dell'efficienza nel settore sanitario. Uno studio applicato.

2001, 3.111 Gianluigi COPPOLA
Studio di una provincia meridionale attraverso un'analisi dei sistemi locali del lavoro. Il caso di Salerno.

2001, 3.112 Francesco GIORDANO
Reti neurali per l'analisi del trend: un approccio per identificare la topologia della rete.

2001, 3.113 Marcella NIGLIO
Nonlinear time series models with switching structure: a comparison of their forecast performances.

2001, 3.114 Damiano FIORILLO
Capitale sociale e crescita economica. Review dei concetti e dell'evidenza empirica.

2001, 3.115 Roberto RAUCCI, Luigi TADDEO
Generalizzazione del concetto di continuità e di derivabilità.

2001, 3.116 Marcella NIGLIO
Ricostruzione dei dati mancanti in serie storiche climatiche.
<table>
<thead>
<tr>
<th>Year</th>
<th>Volume</th>
<th>Authors and Title</th>
</tr>
</thead>
</table>
| 2001, 3.117 | | Vincenzo VECCHIONE
Mutamenti del sistema creditizio in un’area periferica. |
| 2002, 3.118 | | Francesco GIORDANO, Michele LA ROCCA, Cira PERNA
Bootstrap variable selection in neural network regression models. |
| 2002, 3.119 | | Roberto RAUCCI, Luigi TADDEO
Insiemi debolmente convessi e concavità in senso generale. |
| 2002, 3.120 | | Vincenzo VECCHIONE
Know how locali e percorsi di sviluppo in aree e settori marginali. |
| 2002, 3.121 | | Michele LA ROCCA, Cira PERNA
Neural networks with dependent data. |
| 2002, 3.122 | | Pietro SENESI
| 2002, 3.123 | | Gianluigi COPPOLA
Stima di un indicatore di pressione ambientale: un'applicazione ai comuni della Campania. |
| 2002, 3.124 | | Roberto RAUCCI
Sull'esistenza di autovalori e autovettori positivi anche nel caso non lineare. |
| 2002, 3.125 | | Maria Carmela MICCOLI
Identikit di giovani lucani. |
| 2002, 3.126 | | Sergio DE STEFANIS, Giuseppe STORTI
Convexity, productivity change and the economic performance of countries. |
| 2002, 3.127 | | Giovanni C. PORZIO, Maria Prosperina VITALE
Esplorare la non linearità nei modelli Path. |
| 2002, 3.128 | | Rosa FERRENTINO
Sulla funzione di Seal. |
| 2003, 3.129 | | Michele LA ROCCA, Cira PERNAn
Identificazione del livello intermedio nelle reti neurali di tipo feedforward. |
| 2003, 3.130 | | Alessandra AMENDOLA, Marcella NIGLIO, Cosimo VITALE
The exact multi-step ahead predictor of SETARMA models. |
| 2003, 3.131 | | Mariangela BONASIA
La dimensione ottimale di un sistema pensionistico: means tested vs programma universale. |
| 2003, 3.132 | | Annamaria NESE
Abitazione e famiglie a basso reddito. |
2003, 3.133 Maria Lucia PARRELLA
Le proprietà asintotiche del Local Polynomial Bootstrap.

2003, 3.134 Silvio GIOVE, Maurizio NORDIO, Stefano SILVONI
Stima della prevalenza dell'insufficienza renale cronica con reti bayesiane: analisi costo efficacia delle strategie di prevenzione secondaria.

2003, 3.135 Massimo SALZANO
Globalization, complexity and the holism of the italian school of public finance.

2003, 3.136 Giuseppina AUTIERO
Labour market institutional sistems and unemploytment performance in some Oecd countries.

2003, 3.137 Marisa FAGGINI
Recurrence analysis for detecting non-stationarity and chaos in economic times series.

2003, 3.138 Marisa FAGGINI, Massimo SALZANO
The reverse engineering of economic systems. Tools and methodology.

2003, 3.139 Rosa FERRENTINO
In corso di pubblicazione.

2003, 3.140 Rosa FERRENTINO, Roberto RAUCCI
Sui problemi di ottimizzazione in giochi di Stackelberg ed applicazioni in modelli economici.

2003, 3.141 Carmine SICA
In corso di pubblicazione.

2004, 3.142 Sergio DESTEFANIS, Antonella TADDEO, Maurizio TORNATORE
The stock of human capital in the Italian regions.

2004, 3.143 Elena Laureana DEL MERCATO
Edgeworth equilibria with private provision of public good.

2004, 3.144 Elena Laureana DEL MERCATO
Externalities on consumption sets in general equilibrium.

2004, 3.145 Rosa FERRENTINO, Roberto RAUCCI
Su alcuni criteri delle serie a termini non negativi.

2004, 3.146 Rosa FERRENTINO, Roberto RAUCCI
Legame tra le soluzioni di Minty e di Stempacenhia nelle disequazioni variazionali.
2004, 3.147 Gianluigi COPPOLA
In corso di pubblicazione.

2004, 3.148 Massimo Spagnolo
The Importance of Economic Incentives in Fisheries Management

2004, 3.149 F. Salsano
La politica monetaria in presenza di non perfetta osservabilità degli obiettivi del banchiere centrale.

2004, 3.150 A. Vita
La dinamica del cambiamento nella rappresentazione del territorio. Una mappa per i luoghi della Valle dell’Irno.

2004, 3.151 Celi
Empirical Explanation of vertical and horizontal intra-industry trade in the UK: a comment.

2004, 3.152 Amendola – P. Vitale
Self-Assessment and Career Choices: An On-line resource for the University of Salerno.

Introduzione all’economia politica dell’organizzazione: nozioni ed applicazioni.

2004, 3.154 A. Amendola – R. Troisi
Strumenti d’incentivo e modelli di gestione del personale volontario nelle organizzazioni non profit.

2004, 3.155 Lavinia Parisi
La gestione del personale nelle imprese manifatturiere della provincia di Salerno.

2004, 3.156 Angela Spagnuolo – Silvia Keller
La rete di accesso all’ultimo miglio: una valutazione sulle tecnologie alternative.

2005, 3.157 Davide Cantarelli
Elasticities of Complementarity and Substitution in Some Functional Forms. A Comparative Review.

2005, 3.158 Pietro Coretto – Giuseppe Storti
Subjective Expectations in Economics: a Statistical overview of the main findings.

2005, 3.159 Pietro Coretto – Giuseppe Storti
Moments based inference in small samples.
2005, 3.160 Massimo Salzano
Una simulazione neo-keynesiana ad agenti eterogeni.

2005, 3.161 Rosa Ferrentino
Su alcuni paradossi della teoria degli insiemi.

2005, 3.162 Damiano Fiorillo
Capitale sociale: uno o molti? Pochi.

2005, 3.163 Damiano Fiorillo
Il capitale sociale conta per outcomes (macro) economici?.

2005, 3.164 Damiano Fiorillo – Guadalupi Luigi
Attività economiche nel distretto industriale di Nocera inferiore – Gragnano.
Un’analisi su Dati Tagliacarne.

2005, 3.165 Rosa Ferrentino
Pointwise well-posedness in vector optimization and variational inequalities.

2005, 3.166 Roberto Iorio
La ricerca universitaria verso il mercato per il trasferimento tecnologico e rischi per l’”Open Science”: posizioni teoriche e filoni di indagine empirica.

2005, 3.167 Marisa Faggini
The chaotic system and new perspectives for economics methodology. A note.

2005, 3.168 Francesco Giordano
Weak consistent moving block bootstrap estimator of sampling distribution of CLS estimators in a class of bilinear models

2005, 3.169 Edgardo Sica
Tourism as determinant of economic growth: the case of south-east asian countries.

2005, 3.170 Rosa Ferrentino
On Minty variational inequalities and increasing along rays functions.

2005, 3.171 Rosa Ferrentino
On the Minty and Stampacchia scalar variational inequalities

2005, 3.172 Destefanis - Storti
A procedure for detecting outliers in frontier estimation

2005, 3.173 Destefanis - Storti
Evaluating business incentives trough dea. An analysis on capitalia firm data
In and out of the capitalia sample: evaluating attrition bias.

2005, 3.175 Maria Patrizia Vittoria

2005, 3.176 Sergio Destefanis – Giuseppe Mastromatteo
Inequality and labour-market performance. A survey beyond an elusive trade-off.

2007, 3.177 Giuseppe Storti
Modelling asymmetric volatility dynamics by multivariate BL-GARCH models

2007, 3.178 Lucio Valerio Spagnolo – Mario Cerrato
No euro please, We’re British!

2007, 3.179 Maria Carmela Miccoli
Invecchiamento e seconda transizione demografica

2007, 3.180 Maria Carmela Miccoli – Antonio Cortese
Le scuole italiane all’estero: una realtà poco nota

2007, 3.181 Rosa Ferrentino
Variational inequalities and optimization problems

2007, 3.182 Lavinia Parisi
Estimating capability as a latent variable: A Multiple Indicators and Multiple Causes Approach. The example of health

2007, 3.183 Rosa Ferrentino
Well-posedness, a short survey

2007, 3.184 Roberto Iorio – Sandrine Labory – Daniele Paci
Relazioni tra imprese e università nel biotech-salute dell’Emilia Romagna. Una valutazione sulla base della co-authorship delle pubblicazioni scientifiche

2007, 3.185 Lavinia Parisi
Youth Poverty after leaving parental home: does parental incombe matter?

2007, 3.186 Pietro Coretto – Christian Hennig
Identifiability for mixtures of distributions from a location-scale family with uniform

2007, 3.187 Anna Parziale
Il fitness landscape: un nuovo approccio per l’analisi del federalismo fiscale

2007, 3.188 Christian Di Pietro – Elena L. del Mercato
Seminal contributions to the theory of Knowledge and technological change
2007, 3.189 Valeria D’Amato
Pricing di Opzioni esotiche: Rassegna Teorica e Strumenti Informatici per il Prezzamento

2007, 3.190 Roberto Iorio – Sandrine Labory – Daniele Paci
The Determinants of Research Quality in Italy: Empirical Evidence using Bibliometric Data in the Biotech Sector

2008, 3.191 Luca Romaniello – Roberto Iorio
Soddisfazione ed insoddisfazione nel lavoro. Determinanti individualli dell’insoddisfazione lavorativa ed analisi dei fattori di disagio. Un analisi del caso del Triveneto

2008, 3.192 Antonio Cortese – Maria Carmela Miccoli
L’immigrazione nei paesi dell’Europa mediterranea: il caso del Portogallo

2008, 3.193 Marialuisa Restaino
Dropping out of University of Salerno: a Survival Approach

2008, 3.194 Maria Carmela Miccoli
Stranieri sempre più numerosi, con figli sempre più istruiti. Le seconde generazioni nel nostro sistema scolastico

2008, 3.195 Carlo Capuano – Giuseppe De Feo
Privatization in oligopoly: the Impact of the shadow cost of public funds

2008, 3.196 Giuseppe De Feo
Efficiency gains and margers

2008, 3.197 Maria Olivella Rizza
Gunnar Myrdal’s Critiques of Utility Theory. Some implications

2008, 3.198 Sergio De Stefanis – Giuseppe Mastromatteo
Winds of change and policies. The inequality-Employment trade-off in the OECD

2008, 3.199 Giuseppe Giordano – Michele La Rocca – Maria Prosperina Vitale
Strumenti di analisi per esplorare reti di collaborazione scientifica

2008, 3.200 Domenico De Stefano – Giancarlo Ragozzini - Maria Prosperina Vitale
Un approccio di rete all’analisi delle relazioni amicali dei disoccupati nella città di Napoli

2008, 3.201 Francesco Giordano
Weak consistent moving block bootstrap estimator for the variance of cls estimators in a class of bilinear models
L'evoluzione del regime degli scambi nel commercio internazionale agroalimentare: dal GATT alla WTO