Communication Costs and Incentives to Acquire Soft and Hard Knowledge

Corresponding author

abennardo@unisa.it

Working Paper 157
Scientific Commitee
Adalgiso AMENDOLA, Floro Ernesto CAROLEO, Marcello D’AMATO, Cesare IMBRIANI, Pasquale PERSICO

CELPE - Centro di Ricerca Interdipartimentale di Economia del Lavoro e di Politica Economica
Università degli Studi di Salerno
Via Giovanni Paolo II, 132 - 84084 Fisciano, I- Italy
http://www.celpe.unisa.it
E-mail celpe@unisa.it
Index

1. Introduction ..5
2. The Model ..9
 2.1 Second-best knowledge and decentralization
 2.2 Second-best vs full-delegation knowledge and incentives
3. Related Literature ..17
3. Concluding Remarks ..19
Communication Costs and Incentives to Acquire Soft and Hard Knowledge

Antonio Abatemarco∗ Alberto Bennardo†
University of Salerno University of Salerno

Abstract

We study a multiple tasking principal-agent model where the agent gathers soft and hard knowledge for operational purposes. Within this set-up, we model communication from the agent to the principal as the process of hardening and transmitting soft knowledge, in the spirit of Dewatripont and Tirole (2005), and we assume that soft information, once hardened, can be used by the principal as a measure of the agent contribution to production (e.g., for incentive purposes). The assumption that hard and soft knowledge are complements in the communication technology, which naturally reflects the non-depletable nature of hard knowledge, leads to the following results. Under full delegation of information gathering choices, the agent’s private incentives to gather hard information fall short of social incentives; therefore, in the second best, the principal imposes the agent to gather more hard information than he would freely do were his decision reflect market prices (e.g., under full delegation).

Keywords: hard knowledge, soft knowledge, communication, agency

JEL: D20, D82, D86

∗Department of Economics and Statistics and CELPE, University of Salerno, Via Giovanni Paolo II, 132 - 84084 - Fisciano (SA), Italy. Email: aabatemarco@unisa.it
†Department of Economics and Statistics, University of Salerno, and CSEF, University of Napoli "Federico II". Email: abennardo@unisa.it (corresponding author).
1 Introduction

Professional workers, managers, executives and white collars as well as entrepreneurs devote most of their working time to gather and exploit information and knowledge for operational purposes. Roughly, these activities can be distinguished into two subsets: acquisition of hard or explicit, transferable knowledge and information, and acquisition of specialized, soft knowledge which resides with the agent, and is difficult to express, formalize and substantiate into transferable signals. Managerial competence, technical and scientific knowledge, or rough data on the economic fundamentals of the environment in which an agent operates, are all common examples of hard information, whereas knowledge obtained by addressing specific problems through trials, learning by doing process, or, informal, not fully articulated, reasoning guided by past experience are examples of soft knowledge.

The key distinction between hard and soft knowledge, which goes back to Hayek (1945) and Polanyi (1966), reflects their codifiability, namely the extent to which knowledge can be formally expressed, classified and coded (see Garicano and Wu (2012) among others): completely soft (tacit) knowledge cannot be codified; at the other extreme, hard knowledge can be perfectly communicated by using standard codes, which are infrastructures that can be repeatedly operated once created (“communication channels” in the terminology coined by Arrow (1974)).

A large literature starting from Crawford and Sobel (1982) studies whether and how agents can transmit soft information; their approach has more recently been adopted in the organization literature (see, for instance, Dessein 2002). Nonetheless, several authors including Hayek (1945), Dewatripont and Tirole (2005), Liberti et al. (2018), Stein (2002) have stressed that most information is neither completely soft nor perfectly hard, “it is in the middle”, and, most importantly, that the degree of softness of soft knowledge is endogenous: soft information can be, at least partially, hardened, by exerting costly communication activities. For example, a formal proof of a math theorem hardens a mathematical conjecture, an information sharing system across banks hardens the knowledge on borrowers indebtedness etc.

This paper makes a step toward being more explicit in modeling the communication technology that agents’ use to harden soft information. A key feature of our analysis is that (previously gathered) hard knowledge is the main asset (infrastructure) that agents use to communicate, i.e. to harden soft knowledge. We explicitly introduce a communication technology with this property within a Principal-Agent multiple-task setting, where the effort exerted by the agent in gathering and using soft information is unobservable to the principal (due to the essential inarticulate nature of soft knowledge), whereas costly activities undertaken to acquire hard knowledge can be made verifiable by the principal, possibly at a positive cost. Within this set-up, we analyze the agent’s private incentives to acquire hard knowledge and
to communicate soft knowledge, as well as the net gains the principal can achieve by delegating (or centralizing) hard knowledge gathering choices to the agent.

Our model sheds some new lights on these organizational and contractual choices, by showing that a natural complementarity between hard and soft knowledge — which is featured by the communication technology and reflects the non-depletable nature of hard knowledge — leads to the following results. Under full delegation of information gathering choices, the agent private incentives to gather hard information fall short of social incentives; consequently, in the second best the principal imposes the agent to gather more hard information than he would freely do were his decision reflect market prices (e.g., under full delegation).

As a matter of fact, the trade-offs underlying these choices shape the organization and the contractual structures of many real life institutions. Most large companies are organized into business units, but differ in the degree of centralization of activities such as product development, accounting and finance that largely rest upon the acquisition and the use of hard knowledge. Similarly, network of firms setting contractual agreement aimed at developing scientific collaboration or information sharing infrastructures, differs in the degree of centralization of hard knowledge and information gathering activities. By the same token, a fundamental difference between standard credit contracts and venture capital credit agreements is that in contrast to banks, contracts between venture capitalists (the principals) and agents typically involve the venture capitalists centralizing important decision concerning the professionalization of the management (the acquisition by the firm of formal knowledge).

Throughout the paper, we shall postulate that hardening soft knowledge requires learning and codification activities, encompassing both the acquisition and the use of explicit knowledge. In other words, explicit knowledge is the key input — the infrastructure — that economic agents use to harden soft knowledge. This is for two reasons.

First, in order to communicate his tacit knowledge an agent needs a codified language, a set of classification protocols and conventions, as well as the formal knowledge embedded in the technology (softwares) he uses to communicate. For instance, the director of a local branch of a bank must learn how to use a grading rules for loans and borrowers (communication protocols), which are often standardized through a proprietary software, in order to pass local information about the riskiness of his clientele through the company’s hierarchy.

Second, in many real life situations the only way an agent can transmit the tacit knowledge that he has obtained through learning by doing, or through intuitive judgements based on past experience, is to acquire the cognitive ability to make “formal statements” replacing his heuristics. For this purpose, the agent needs to learn how to use formal knowledge produced
by other agents (theorems, formal logic, causal analysis etc.) to develop this knowledge by himself. For instance, the branch director of a bank or a division manager may have observed some local information (say a signal on the state of demand) that has induced him to update his prior beliefs. Then, knowledge of elementary principles of Bayesian inference enables him to communicate why and how he updated his prior distribution, and to replace somewhat confusing informal statements about his beliefs’ change. Similarly, knowing some econometrics may enable him to provide better evidence and to argue more forcefully on the existence of a causality relationships between observable variables, that he has understood through long periods of field experience.

Within our model, communication activities take place in a multiple tasking set-up where a risk-neutral principal and an agent, whose risk attitude is conventionally described by CARA preferences, interact through several stages. At the initial stage, the principal offers to the agent an exclusive contract that the latter can either accept or refuse; subsequently the agent engages in two costly activities, acquisition and use of specialized human capital (specific knowledge) and acquisition of hard knowledge, which is used subsequently to better evaluate a signal on the state of the world. In an intermediary stage, the agent observes two imperfect signals: one provides information on the true state of nature (for instance a demand or a supply shock that is realized in the final stage); the other signal, which in our setting can be naturally interpreted as an intermediary output (such as, for instance, a prototype resulting from research activity). The quality of the signal on the true state of nature depends on the amount of hard knowledge gathered by the agent, whereas the expected value of the intermediary output is increasing in the amount of specific knowledge.

The agent then uses a communication technology to transmit his information on the value of the intermediary output and on the true state of nature to the principal. The signal on the state of nature is hard information and can be perfectly transmitted, whereas the value of the intermediary output is soft information that needs to be hardened. The hardening process produces a signal whose precision is increasing both in the amount of hard and soft knowledge gathered by the agent. We assume, in the spirit of the literature on certifiable information (Milgrom 1981), that all knowledge that is hardened by the agent is truthfully communicated to the principal, whereas information that remains tacit is not contractually used in the agency relationship.

Finally, the information revealed at the intermediary stage (the signal on the state of nature and the signal on the intermediary output communicated by the agent) is used by the principal in the last stage to choose a monetary investment (for operational purposes), production is realized and the agent receives a payment contingent on the realization of the uncertainty resolved at the intermediary and at the final stage, as well as on the information he
Within this set-up, the paper addresses the following two questions. First, under which conditions is it second best optimal for the principal to let the agent “freely” choose how much hard information to acquire? Second, whenever full delegation is not constraint efficient, do second best arrangements impose the agents to gather more or less hard information than he would freely do under a contract that provides only monetary incentives?

The following assumption of complementarity between soft and hard knowledge in the communication process is imposed in characterizing the second best contract of this problem. The larger the amount of specific tacit knowledge gathered by the agent, the stronger the impact of explicit hard knowledge in reducing the noise in the transmission of information by the agent to the principal. We argue that the very essential feature of formal knowledge, which is its non depletability, generates this complementarity. An agent involved on his core production activity for along time acquires several pieces of soft information, and can use the same formal knowledge (the same “information channel” in the language of Arrow) repeatedly, in order to communicate each of these pieces. More generally, when the amount of specialized knowledge gathered on a specific problem gets larger, *ceteris paribus*, the expected value that an additional “bite” of formal knowledge yielded in the communication process gets larger because of the non depletability of formal knowledge.

Under this assumption, our analysis delivers the following results. In the second best the principal imposes the agent to acquire more hard knowledge than he would freely choose. Moreover, under the second best contract, the shadow price of hard knowledge paid by the agent is lower than the market price. Finally, we study the case in which acquisition of hard information cannot be verified, and show that, under mild convexity assumptions, it is lower than the corresponding second best level.

By acquiring more information than the amount that maximizes his expected utility — given the contractual payments — the agent reduces the variability of signals’ realizations and, hence, the variability of his consumption. This relaxes his incentive constraint with respect to soft knowledge acquisition, e.g., it makes it relatively more valuable to exert effort in that activity. In choosing hard knowledge under full delegation, the agent does not internalize the effect of his choice on this incentive constraint, and, hence, on the amount of insurance that he can obtain from the principal.

These results provide a purely incentive based rationale for why economic institutions, in the presence of endogenous communication costs limiting the transfers of soft information, centralize the functions involving the acquisition of hard information. The same findings suggest that contractual arrangements through which a venture capitalist providing funds “imposes” an entrepreneur to acquire managerial skills and professionalization. This practice can be rationalized as second best devise that the venture capitalist
(the principal) uses in order to facilitate the evaluation of the entrepreneurial activities at intermediary stages and the assessment of firms’ investment opportunities.

2 The Model

We consider a multi-task principal-agent set-up in which a risk-averse agent, after signing a contract with a risk-neutral principal, operates a two stages production technology. In the first stage, he exerts effort to use and develop his specialized knowledge (his idea, project, or specific human capital), and gathers general knowledge (managerial competence, professionalization, or technical and scientific knowledge) as production inputs. General knowledge can be also acquired by the principal through outsourcing, whereas specialized knowledge is exclusively provided by the agent.

These two types of knowledge are then used in the second stage. Specialized knowledge produces an intermediary output, whereas general knowledge provided by the agent has a double role: it allows the agent to communicate (to harden) the soft knowledge that he has gathered as well as to better interpret hard information (information on the state of nature).

In the following we describe first the production and then the communication technology.

Let \(a \in A \) and \(z_A \in Z \), with \(A \) and \(Z \) being compact sets, be the effort exerted by the agent in gathering specialized knowledge and the amount of general knowledge that he acquires in the first stage, respectively; \(a \) is assumed to generate a disutility cost \(\varphi(a) \) while \(z \) is acquired at some monetary cost \(q_A \).

The action \(a \) produces an intermediate random output \(x = h(a) + \varepsilon_x \), where \(h(\cdot) \) is a strictly concave, increasing and twice differentiable function of effort, and where \(\varepsilon_x \) is a random production shock, which is normally distributed with variance \(\sigma^2_x \).

The intermediary output \(x \) together with a monetary investment \(m \in M = [0, +\infty) \) produces a final output whose value depends on the realization of a state of nature \(\omega \in \Omega \) which is normally distributed with mean \(\mu_\omega \) and variance \(\sigma^2_\omega \). Let \(y = g(x + \omega, m) \) be the final value of the output (of second-stage production). We will assume that \(g(\cdot, \cdot) \) is strictly concave and twice differentiable in \((x + \omega)\) and \(m \), respectively.

The true state of nature \(\omega \) is unknown to both the agent and the principal at the second production stage (e.g., when \(m \) is chosen). However, at that stage, the principal can use the general knowledge acquired by the agent, \(z_A \), as well as that obtained through outsourcing, \(z_P \), to interpret a signal \(\theta \in \Theta \) of the true state where \(\Theta \) is a compact set. We assume that \(\theta \) is normally distributed with mean \(\mu_\theta \) and variance \(\sigma^2_\theta(z) \), where \(z = z_A + z_P \).
is the overall amount of general knowledge acquired by the agent z_A and by the principal z_P: the larger the general knowledge z acquired in the first stage, the lower the measurement error made by the principal.

The effort a exerted in using and gathering specialized human capital is assumed to be private information of the agent and it is not contractible. In the first part of the paper, we shall assume that z_A is verifiable at zero cost and contractible. Subsequently, we shall also study an alternative regime where z_A is unobservable and, for this reason, the choice of z_A must be fully delegated to the agent.

The signal θ is observed by the principal, whereas the intermediary output x is soft information observed by the agent only. The realization of this signal can be communicated by the agent to the principal only to the extent that it is hardened by the agent. The outcome of the communication process is a signal x_c whose precision depends upon both the amount of soft and hard information gathered by the agent. More specifically, the signal $x_c = h(a) + \varepsilon_c$ with ε_c is a normally distributed error with zero mean and variance $\sigma^2_c(a, z_A)$.

The following two assumptions on communication are key for our analysis. First, communication skills of the agent are increasing in knowledge z_A, so that, for all $a \in A$ and $z_A' > z_A$, $\sigma^2_c(a, z_A') < \sigma^2_c(a, z_A)$; i.e., the signal x_c received by the principal is more or less noisy depending on knowledge z_A gathered by the agent.

Second, for all $z_A \in Z$ and $a', a \in A$ with $a' > a$, $\partial \sigma^2_c(a', z_A)/\partial z_A < \partial \sigma^2_c(a, z_A)/\partial z_A$, that is, the larger the amount of specific tacit knowledge gathered by the agent, the stronger the impact of explicit hard knowledge in reducing the noise in the transmission of information by the agent to the principal. It is natural to interpret a as a vector of many activities giving to the agent ‘pieces’ of information to be communicated to the principal by using knowledge z_A which acts as a public good, in that the use of knowledge to communicate specialized human capital does not deplete its availability for further communication.

We shall assume that contractual payments can be made contingent all on information that both the agent and the principal can observe and verify: namely x_c, θ, $(x + \omega)$, and y. However, as m is contractible and $(x + \omega)$ is observed by both parties, y turns out to be a redundant signal.

As conventional in the literature, we shall restrict attention to linear contracts. A contract $\gamma := \{a, z_A, z_P, t, s_c, s_\theta, s_\omega\}$ then specifies a vector of actions (a, z_A, z_P), a fixed payment t, and a vector of linear (unitary) payments $s = (s_c, s_\theta, s_\omega)$ contingent on signals $x_c, \theta, (x + \omega)$ respectively.

The agent is assumed to be risk-averse with constant absolute risk aver-
sion (CARA) with preferences represented by the Bernoulli utility

\[U(w, a, z_A) = -e^{[-\eta(w(\gamma) - \varphi(a) - q_A z_A)]} \]

(1)

where \(w(\gamma) = t + s_c x_c + s_\theta + s_\omega (x + \omega) \), \(\eta > 0 \) is the coefficient of absolute risk aversion, \(w \in \mathbb{R}_+ \) is the payment defined by the principal, and \(\varphi(\cdot) \) is increasing and strictly convex.

The expected utility of an agent who signs the contract \(\gamma \) and takes actions prescribed by the contract is

\[E[U(\gamma)] = E[-e^{[-\eta(t + s_c x_c + s_\theta + s_\omega (x + \omega) + s_\omega \mu - \varphi(a) - q_A z_A)]}] \]

(2)

Merely for simplicity, we shall assume that \(\sigma_{xc} = \sigma_{x\omega} = \sigma_{x\theta} = \sigma_{c\omega} = \sigma_{c\theta} = 0 \). Hence, the certainty equivalent of \(EU(\gamma) \) can be written as

\[CE(\gamma) = t + h(a)(s_\theta + s_\omega) + (s_\theta + s_\omega) \mu - \varphi(a) - q_A z_A + \frac{1}{2} \eta \left((s_c + s_\omega)^2 \sigma_x^2 + s_c^2 \sigma_c^2 + s_\omega^2 \sigma_\omega^2 + s_\theta^2 \sigma_\theta^2 + 2s_\theta s_\omega \sigma_{\theta\omega} \right) \]

(3)

The certainty profit function of the principal is

\[\Pi(y, w, m, z_P) = y - w - c(m) - q_P z_P \]

(4)

where \(q_P \) is the market price of general knowledge. The principal expected profit result from a two stage maximization. In the second, last stage the money investment \(m \) is optimally chosen after observing \(x_c \) and \(\theta \). Hence, at that stage the principal chooses \(m \) by solving the following program.

\[m^*(x_c, \theta, \gamma) = \arg \max_m E[\Pi(m) | x_c, \theta, \gamma] \]

\[= \int_{0}^{+\infty} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} \left(g(x + \omega, m) - w(\gamma) \right) f(x + \omega | x_c, \theta, \gamma) d(x + \omega) + \]

(5)

\[- c(m) - q_P z_P \]

s.t. \(x = h(a) + \varepsilon_x \), \(x_c = h(a) + \varepsilon_{x_c} + \varepsilon_c \)

where \(f(x + \omega | x_c, \theta, \gamma) \) is the posterior density function of \((x + \omega) \).

Provided that the agent chooses the actions prescribed by the contract \(\gamma \), the expected profit that the principal obtains at the initial stage is then

\[E[\Pi(\gamma)] = \int_{0}^{+\infty} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} \left(g(x + \omega, m^*(x_c, \theta, \gamma) - w(\gamma) - c(m^*(x_c, \theta, \gamma)) - q_P z_P \right) \]

(6)

\[f(x + \omega | x_c, \theta, \gamma) f(x_c, \theta | \gamma) d(x + \omega) dx_c d\theta \]
where \(f(x_c, \theta | \gamma) \) is the joint density function associating a probability to any pair \((x_c, \theta)\) conditional on \((a, z_A, z_P)\).

In the first stage the principal solves the second best program, that is, he maximizes his expected profits under the incentive compatibility constraint, imposing that the agent acquires unobservable soft knowledge as prescribed by the contract, and the participation constraint:

\[
\begin{align*}
\max_{\gamma} & \quad E[\Pi(\gamma)] \\
\text{s.t.} & \quad a = \arg \max_a E[U(\gamma)] \quad (IC_a) \quad (7) \\
& \quad E[U(\gamma)] \geq \bar{U} \quad (PC')
\end{align*}
\]

Later on in the paper, we shall also consider an alternative regime, hereafter full-delegation analysis, where the amount of hard knowledge gathered by the agent, \(z_A\), is not observable by the principal, so that \(z_A\) acquisition decision must be necessarily fully delegated to the agent. The full delegation contract solves the following program.

\[
\begin{align*}
\max_{\gamma'} & \quad E[\Pi(\gamma')] \\
\text{s.t.} & \quad a = \arg \max_a E[U(\gamma')] \quad (IC'_a) \quad (8) \\
& \quad z_A = \arg \max_{z_A} E[U(\gamma')] \quad (IC_z) \\
& \quad E[U(\gamma')] \geq \bar{U} \quad (PC'')
\end{align*}
\]

where the condition \((IC_z)\) imposes that it is rational for the agent to acquire the amount of hard knowledge recommended by the program. In what follows, we indicate by \(\gamma^{FD} = (a^{FD}, z_A^{FD}, z_P^{FD}, t^{FD}, s^{FD})\) the solutions to the full delegation program \((8)\), whereas \(\gamma^{SB} = (a^{SB}, z_A^{SB}, z_P^{SB}, t^{SB}, s^{SB})\) are the solutions of the second best program \((7)\).

2.1 Second-best knowledge and decentralization

This section addresses the following two questions. First, under which conditions is it second best optimal for the principal to let the agent “freely” choose how much hard information to acquire? Second, whenever full delegation is not constraint efficient, do second best arrangements impose the agents to gather more or less hard information than he would freely do under a contract that provides only monetary incentives? Let

\[
\begin{align*}
z_A^s = \arg \max_{z_A} E[U(a^{SB}, z_A, z_P^{SB}, s^{SB})], \quad (9)
\end{align*}
\]

addressing the former of the two questions above amounts to ask whether the second best value \(z_A^{SB}\) is different from \(z_A^s\), or equivalently, whether the
agent and the principal private incentives are aligned with respect to the choice of z_A. Addressing the latter of the two questions above amounts to verify whether $z_A^* \geq z_{SB}^A$.

The next two propositions show that the second best incentives of the principal and the agent diverge with respect to the choice of z_A, implying that it would be suboptimal for the principal (at least whenever z_A can be monitored at a sufficiently low cost) to delegate the choice of z_A to the agent. Moreover, we will show that $z_A^* < z_{SB}^A$, which is the level of z_A that the agent would prefer to gather, were he free to choose, falls short of the second best value, under the assumption that soft and hard information are complementary inputs in the communication information.

Proposition 2.1 proves this result restricting attention to the case in which $\frac{\partial E[\Pi(\gamma_{SB})]}{\partial z_P} > 0$, which is the amount of information gathered in the second best is lower than the (first best) profit maximizing level (we shall consider the complementary case later).

Proposition 2.1. $z_A^{SB} > z_A^*$ if $z_A^{SB} = z_A^{SB} + z_A^P$ such that $\frac{\partial E[\Pi(\gamma_{SB})]}{\partial z_P} > 0$.

Proof. Consider the first-order condition of the second best program w.r.t. z_A

$$
\frac{dE[\Pi(\gamma_{SB})]}{dz_A} + \lambda \frac{\partial}{\partial z_A} \left(\frac{dE[U(\gamma_{SB})]}{da} \right) + \mu \frac{dE[U(\gamma_{SB})]}{dz_A} = 0 \quad (10)
$$

Note first that

$$
\frac{dE[U(\gamma_{SB})]}{da} = \frac{\partial E[U(\gamma_{SB})]}{\partial a} \frac{\partial}{\partial z_A} + \frac{\partial E[U(\gamma_{SB})]}{\partial z_A} \quad (11)
$$

Hence, by envelope logic,

$$
\frac{dE[U(\gamma_{SB})]}{dz_A} = \frac{\partial E[U(\gamma_{SB})]}{\partial z_A} \quad (12)
$$

Moreover,

$$
\frac{\partial}{\partial z_A} \left(\frac{dEU(\gamma_{SB})}{da} \right) = \frac{1}{2} \eta s^2 \frac{\partial^2 \sigma_\theta^2(a,z_A)}{\partial a \partial z_A} > 0 \quad (13)
$$

under our complementarity assumption $\left(\frac{\partial^2 \sigma_\theta^2(a,z_A)}{\partial a \partial z_A} < 0 \right)$.

Consider now the first addenda in (10), $\frac{dE[\Pi(\gamma_{SB})]}{dz_A}$. Under the assumption $\frac{\partial E[\Pi(\gamma_{SB})]}{\partial z_P} > 0$, $\frac{dE[\Pi(\gamma_{SB})]}{dz_A}$ is equal to zero. This fact is proved by contradiction. Notice first that an increase in z_P does not affect the incentive constraint $\frac{\partial}{\partial z_A} \left(\frac{dE[U(\gamma_{SB})]}{da} \right) = 0$, and increases the agent’s expected utility by reducing the variability of his consumption, which is

$$
- \frac{1}{2} \eta \left(s^2 \frac{\partial^2 \sigma_\theta^2(z)}{\partial z_P^2} + 2s_\theta s_\omega \frac{\partial \sigma_\theta \omega(z)}{\partial z_P} \right) > 0 \quad (14)
$$

13
Moreover, since \(\frac{\partial E[\Pi(\gamma^{SB})]}{\partial z_P} > 0 \) by assumption, the principal weakly gains by increasing \(z_P \) whenever \(\frac{\partial E[\Pi(\gamma^{SB})]}{\partial z_A} > 0 \). Hence in the second best \(\frac{\partial E[\Pi(\gamma^{SB})]}{\partial z_A} = 0 \). It then follows that optimality of \(z_A \) implies \(\frac{\partial E[U(\gamma^{SB})]}{\partial z_A} < 0 \), which is equivalent to \(z^{SB} > z^* \).

The intuition for this result is as follows. First, starting from \(z_A = z_A^* \), an increase of \(z_A \) allows the agent to provide a less noisy signal of the intermediary output. This reduces the variability of the agent’s consumption and increases his utility. At \(z_A = z_A^* \), however, this effect is exactly offset by the cost of \(z \). Thus, the effect of a small increase in \(z_A \) around \(z_A^* \) on the agent utility is zero at first order. However, when \(z_A \) increases the signal of the agent’s action, \(a \), gets more precise, hence the agent’s marginal gain from increasing \(a \) gets larger, or, equivalently, the incentive constraint gets relaxed. Moreover, an increase of \(z_A \) under the condition \(\frac{\partial E[\Pi(\gamma^{SB})]}{\partial z_P} > 0 \) enhances the expected profit of the principal.

In summary, starting from \(z_A = z_A^* \), an increase of \(z_A \) has a second order effect on the agent’s utility, a positive effect on the principal’s expected profit, and relaxes the incentive constraint. This explains why the principal gains from imposing the agent to gather more information than he would freely do at the second best: \(z^{SB} > z^* \).

Next proposition extends the result of Proposition 2.1 to the complementary case where \(\frac{\partial E[\Pi(\gamma^{SB})]}{\partial z_P} \leq 0 \).

Proposition 2.2. \(z_A^{SB} > z_A^* \) if \(z^{SB} = z_A^{SB} + z_P^{SB} \) such that \(\frac{\partial E[\Pi(\gamma^{SB})]}{\partial z_P} \leq 0 \).

Proof. The proof proceeds by considering a few steps.

Step 1. In the second best \(\frac{\partial E[\Pi(\gamma^{SB})]}{\partial z_A} > 0 \) and \(\frac{\partial E[U(\gamma^{SB})]}{\partial z_A} > 0 \) one cannot have.

Proof. The proof is by contradiction. If \(\frac{\partial E[\Pi(\gamma^{SB})]}{\partial z_A} > 0 \) and \(\frac{\partial E[U(\gamma^{SB})]}{\partial z_A} > 0 \) an increase in \(z_A \) would (i) relax the incentive constraint (since \(\frac{\partial}{\partial z_A} \left(\frac{\partial E[U(\gamma^{SB})]}{\partial a} \right) > 0 \)), (ii) enhance expected profits by construction \((\partial E[\Pi(\gamma^{SB})])/\partial z_A > 0 \), and (iii) weakly increase the expected utility, which, all-together, would contradict second-best optimality.

Step 2. In the second-best, it must be \(\frac{\partial E[\Pi(\gamma^{SB})]}{\partial z_A} \geq 0 \).

Proof. Assume, by contradiction, \(\frac{\partial E[\Pi(\gamma)]}{\partial z_A} < 0 \). Notice that \(\frac{\partial E[\Pi(\gamma)]}{\partial z_A} < \frac{\partial E[\Pi(\gamma)]}{\partial z_P} \) because the principal does not pay for the cost of \(z_A \). Then, one must necessarily have \(\frac{\partial E[\Pi(\gamma^{SB})]}{\partial z_P} < 0 \). But this implies that \(z_P^{SB} \) must necessarily equal zero to be second-best optimal. Moreover, if \(z_P^{SB} = 0 \), then \(\frac{\partial E[\Pi(\gamma)]}{\partial z_A} \geq 0 \).
Step 3. In the second best \(\frac{\partial E[U(\gamma_{SB})]}{\partial z_{A}} < 0 \).

Proof. Once more the proof goes by contradiction. Suppose \(\frac{\partial E[U(\gamma_{SB})]}{\partial z_{A}} > 0 \), then, a small increase of \(z_{SB}^{A} \) would (i) increase the expected utility of the agent by construction, (ii) relax the incentive constraint (since \(\frac{\partial}{\partial z_{A}} \left(\frac{dE[U(\gamma_{SB})]}{da} \right) > 0 \)), and (iii) weakly increase the principal’s profit (since \(\frac{\partial E[\Pi(\gamma_{SB})]}{\partial z_{A}} \geq 0 \)), meaning that, second-best optimality of \(z_{SB}^{A} \) would be contradicted.

The intuition underlying this result is similar to that behind Proposition 2.1. However, Proposition 2.2 extends the analysis to the case in which the amount of information gathered by the principal in the second best is larger or equal than the profit maximizing level. In order to prove that the result of Proposition 2.2 continues to hold true in this case we need to show, as done in Proposition 2.2, that in the second best the marginal impact of \(z_{A} \) on the expected profit is non negative.

2.2 Second-best vs full-delegation knowledge and incentives

The analysis of the previous section has been developed under the assumption of contractibility of \(z_{A} \).

In most real life situations, however, the knowledge gathered by an agent can be verified only when the competences he obtained by acquiring that knowledge can be certified by a third party at a sufficiently low cost. Moreover, the real life cost of certification depends both upon the type of knowledge required to the agent (for instance, the acquisition of scientific knowledge is, in general, easier to certify than the acquisition of knowledge on the specific environment where a firm operates) and on the truthfulness enforcement standards that prevail in the specific institutional context at stake.

For this reason, it becomes of interest, especially from a positive viewpoint, to understand whether the agent gathers more hard knowledge in the case where this knowledge is fully certifiable (e.g., in the second best) or when it is his own private information, respectively (e.g., in the full delegation program).

Next proposition shows that the agent gathers more information in the second best program than in the full delegation program.

Proposition 2.3. The second best value of hard knowledge gathered by the agent, \(z_{SB}^{A} \), is lower than the value of knowledge gathered under full delegation, \(z_{A}^{FD} \).
Proof. Given \(s' = (s^F_D, s^F_D, s^F_D, ds) \), let

\[
\gamma' = (a^{FD}, z^{FD} + dz, z^{FD} + dt, t^{FD} + dt, s')
\]

be a perturbation of the full-delegation contract. Moreover, let \(dIC_a \approx \frac{\partial E[U(\gamma')]}{\partial a} - \frac{\partial E[U(\gamma^{FD})]}{\partial a} \) and \(dU \approx E[U(\gamma')] - E[U(\gamma^{FD})] \) be the first order approximation of the difference between the value of incentive constraint and expected utility evaluated at \(\gamma' \) and \(\gamma^{FD} \) respectively. As an intermediary step we show that there exists a vector \((dz, ds, dt)\) such that \(dIC_a \approx 0 \), \(dU \approx 0, \) and \(E[\Pi(\gamma')] > E[\Pi(\gamma^{FD})] \). Specifically, we show that the above relationships are satisfied for

\[
\begin{align*}
 dt & = - \left(\left(\frac{\partial E[U(\gamma^{FD})]}{\partial s} \right) \left(\frac{1}{2} \eta s^c \sigma^2 \left(\frac{\partial^2 \sigma^2(a, z_A)}{\partial a \partial z_A} \right) \left(\frac{\partial h(a)}{\partial a} \right)^{-1} \right) + \left(\frac{\partial E[U(\gamma^{FD})]}{\partial z_A} \right) \right) dz_A \\
 ds & = - \frac{1}{2} \eta s^c \sigma^2 \left(\frac{\partial h(a)}{\partial a} \right)^{-1} dz_A
\end{align*}
\]

(15)

and for any \(dz_A > 0 \). Totally differentiating \(\frac{\partial E[U(\gamma')]}{\partial a} \) w.r.t. \((ds, dz_A)\) one obtains

\[
\frac{\partial h(a)}{\partial a} ds + \frac{1}{2} \eta s^c \sigma^2 \left(\frac{\partial^2 \sigma^2(a, z_A)}{\partial a \partial z_A} \right) dz_A = 0
\]

(16)

Hence, \((dz, ds, dt)\) satisfies \(dIC_a \approx 0 \) since \(dt \) does not appear in the incentive constraint w.r.t. \(a \). Let

\[
\chi(s, \sigma^2, \sigma^2, \sigma^2, \sigma^2) = - \frac{1}{2} \eta \left((s_c + s_w)^2 \sigma^2 + s^2 \sigma^2(a, z_A) + s^2 \sigma^2(z) + s^2 \sigma^2 + 2s \eta s_w \sigma^2(z) \right)
\]

(17)

be the variance component in \(CE(\gamma) \). Totally differentiating \(CE(\gamma^{FD}) \) w.r.t. \((ds, dz_A)\) one obtains

\[
(h(a) + \mu_w) ds - q_A dz_A + \frac{\partial \chi(\gamma)}{\partial s} ds + \frac{\partial \chi(\gamma)}{\partial z} dz_A = 0
\]

(18)

Finally, replacing in \(E[\Pi(\gamma^{FD})] \) the values of \(dt \) and \(ds \) from (15), and then totally differentiating \(E[\Pi(\gamma^{FD})] \) w.r.t. \(dz_A \), one obtains

\[
\left(\frac{1}{2} \eta s^c \sigma^2 \left(\frac{\partial^2 \sigma^2(a, z_A)}{\partial a \partial z_A} \right) \left(\frac{\partial h(a)}{\partial a} \right)^{-1} \left(\frac{\partial \chi(\gamma)}{\partial s} \right) + \frac{\partial E[\Pi(\gamma^{FD})]}{\partial z_A} + \frac{\partial E[U(\gamma^{FD})]}{\partial z_A} \right) dz_A
\]

(19)

and one can immediately verify that this is strictly positive for \(ds, dt \) in (15) and \(dz_A > 0 \).
A continuity argument then implies that there is a contract γ'' that satisfies the participation and incentive constraint w.r.t. a, and yields larger expected profit to the principal than in γ^{FD}.

Now consider the following program

$$\max_{\gamma} E[\Pi(\gamma)] \quad \text{s.t.} \quad IC_\omega(\gamma) = 0; \ E[U(\gamma) = \bar{U}]; \ z_A = \bar{z}_A \quad (20)$$

Let $\hat{\Pi}(\bar{z}_A)$ be the value function associated to this program. The previous result implies that $\frac{\partial \Pi(\bar{z}_A)}{\partial z_A} |_{z_A = z^{FD} > 0}$. The reason is the following. First, $\hat{\Pi}(z^{FD}) = E[\Pi(\gamma^{FD})]$ by construction. Moreover, there is a feasible contract γ'' imposing $z_A^{FD} + d_z A$ with $d_z A > 0$ yielding a larger profit than γ^{FD}. Therefore, the value function associated to program (20) must necessarily take a larger value in $z_A^{FD} + d_z A$ than in z_A^{FD}. Hence, if the program in (20) has an unique local maximum than $z^{FD} < z^{SB}$. If, instead, the second-best program has several local maxima, there is at least one of them such that $z^{FD} < z^{SB}$. \[\square\]

Roughly, this proposition shows that starting from the full delegation contract, one can always find a contract that satisfies both the participation and the incentive constraint w.r.t. a, but not the incentive constraint w.r.t. z_A, and increases the expected profit of the principal. The intuition behind this result is as follows.

First, an increase in z_A of size $d_z A$, by reducing the variance of agent’s consumption, would relax the incentive constraint w.r.t. a (i.e. would induce the agent to choose a larger a). The principal can then reduce the unitary bonus s_ω by an amount d_s_ω and keep incentives to exert a unchanged.

Second, the principal can also vary t by dt so that (d_s_ω, dt) leaves also the expected utility unchanged. Then, it becomes key to ascertain how the perturbation $(d_z A, dt, d_s_\omega)$ affects the expected profit of the principal; as a matter of fact, $d_z A$ increases the principal profit since z_A has positive operation value. Moreover, as we show, the perturbation (dt, d_s_ω), that leaves the utility of the agent unaltered, increases the principal’s expected profit. This is because the marginal rates of substitution between d_s_ω and dt are different for the principal and the agent. Specifically, the latter values relatively more a unitary increase in t than a unitary increase in s_ω, as s_ω also increases the variability of the consumption.

3 Related Literature

Dewatripont and Tirole (2005), Liberti and Petersen (2018) and Stein (2002) all take the view that the degree of soft information and knowledge is endogenous and depends on costly activities made by the parties in a contractual
relationship. For simplicity, in this paper we focus on costly activities undertaken by the agent and assume that the principal’s knowledge is exogenous. Our analysis hinges on the assumption that in order to make transferable (harden) his soft knowledge, the agent needs to perform costly activities that involve the production and/or the use of hard knowledge.

The seminal article by Holmstrom and Milgrom (1991) provides the technology to investigate incentive issues within a multiple tasking environment. Within this framework a large literature emphasizes the “substitution effect” between costly efforts exerted in different activities. This effect arises because those efforts are seen as homogeneous, depletable inputs. In our paper, we develop a variant of the multi-task model by Holmstrom Milgrom — which is extended by introducing a communication technology between the principal and the agent — in order focus on the case of professional and entrepreneurial activities. Within our set-up, the main inputs supplied by the agent in production are not homogenous effort, but soft and hard knowledge and information. The non depletability of these inputs generates a strategic complementarity in the communication function, which turns out to be the main ingredient of our analysis.

The second best literature on optimal non monetary payments and the public economics literature on incentives (Atkinson and Stiglitz 1976, Benard et al. 2013, Fabbri and Menichini 2010, 2016, Greenwald and Stiglitz 1986, Marino and Zábojník 2008, Rajan and Wulf 2006) has shown that it may be optimal from a second best perspective to induce the agent to over-consume (under-consume) goods or production factors which reduce the marginal disutility of effort or increase the marginal productivity of effort. In this paper we show that the complementarity between soft and hard knowledge in communication, which is due to the non-depletability of the latter, implies that the second best contract imposes the agent to overproduce hard knowledge.

Holmstrom and Milgrom (1991), Rajan and Zingales (1998), and Holmstrom (1999) argue that a firm can regulate (limit) access to some key assets in order to provide better incentives to agents. Within our set-up, the principal “regulates” access to hard knowledge by imposing the agent to acquire more knowledge than he would freely do: extra access is imposed, instead of being forbidden. Our paper is also related with the organization literature focusing on delegation and integration (centralization) decisions within firms (Aghion and Tirole 1997, Dessein 2002, Dessein et al. 2010, Friebel and Raith 2010 among others).\footnote{There also exists a literature starting with the seminal contributions by Marshack and Radner (1972) on optimal teams that studies optimal communication mechanisms within teams. This literature, however abstracts from incentive issues.} In most of those papers, however, monetary incentives are muted by assumption, information resides on the agent (e.g. cannot be hardened) and “exogenous” technological motives (for instance,
gains from specialization) imply that full delegation may not be efficient in the second best. In our paper, contracts are complete and monetary incentives are therefore optimally used, soft information can be hardened, albeit at a cost, and finally, whether delegation is constrained efficient only depends on an incentive trade-off.

From an empirical perspective, the literature on the role of venture capital (Da Rin et al. 2013, Hellman and Puri 2002a, 2002b, Kaplan and Stromberg 2001) shows that venture capitalists provide professionalization and business competence to the firms they fund. Consistently with our results, venture capitalists get decision power within the firms they fund and use this decision power to “impose” the acquisition of those competencies (knowledge). This is broadly in line with the results of our model, once the venture capital and the firm, are seen, as suggested by Kaplan and Stromberg (2001), as the parties of Principal-Agent relationship.

Finally, there exists a relatively large literature investigating agents’ incentives to acquire information before contracting (Bergmann and Välimäki 2003, Crémer et al. 1998, Dasgupta and Stiglitz 1980, Hirshleifer 1971). A result common to most of that literature is that agents acquire “too much” information with respect to the second best, due to a negative information externality. In this paper, we obtain the opposite result: in the presence of full delegation, an agent acquire less information than the second best level.

4 Concluding remarks

A recent strands of papers in the literature on contracts and institutions has investigated whether incentives to gather and communicate information can shape organizational and contractual forms that are commonly observed in the real world.

In this paper, we contribute to this literature by studying a multiple tasking model where a communication technology is introduced that harden and transmit soft information from the agent to the principal. Within this set-up we show that the second best contract entails over acquisition of hard knowledge by the agent, and is precluded by full delegation.

A few simplifying assumptions are introduced to obtain this result in a stark form. In particular, we postulate that acquisition of hard and soft knowledge are the only productive activities undertaken by the agent, and that hard knowledge is the only input of the communication technology. We also assume that only hard information can be communicated to the principal.

In a companion paper (Abatemarco and Bennardo 2019b) we extend the analysis of this paper by considering bilateral communication, and we also derive a few comparative statics results.

We see the results of this paper as a very initial step toward a better
understanding of some important issues concerning the process of hardening soft knowledge and its integration with the analysis of incentives performed within standard principal agent models.
References

CELPE's Discussion Papers

2018, 156 Adalgiso AMENDOLA, Cristian BARRA, Marinella BOCCIA, Anna PAPACCIO
Market Structure and Financial Stability: Theory and Evidence

2018, 155 Alberto BENNARDO, Marco PAGANO, Marco PAGNOZZI
Effetti della Diffusione dell'Informazione e Struttura Concorrenziale del Mercato

2017, 154 Cristina BARRA, Roberto ZOTTI
Financial Stability as a Public Policy Goal to Increase Local Economic Development: an Empirical Investigation from Italian Labour Market Areas

2017, 153 Adalgiso AMENDOLA, Mario DI SERIO, Matteo FRAGETTA
The Government Spending Multiplier at the Zero Lower Bound: Evidence from the Euro Area

2017, 152 Anna Maria FERRAGINA, Fernanda MAZZOTTA
Firm Employment Resilience and FDI: Evidence from Italy

2017, 151 Fernanda MAZZOTTA, Lavinia PARISI
What are the Role of Economic Factors in Determining Leaving and Returning to the Parental Home in Europe During the Crisis? Technical Details

2017, 150 Mario DI SERIO, Matteo FRAGETTA, Emanuel GASTEIGER
The Government Spending Multiplier at the Zero Lower Bound: Evidence from the United States

2017, 149 Giorgia IOVINO
Il Consumo di Suolo. Un Focus sull'Europa

2017, 148 Giorgia IOVINO
Waterfront Urbani: Approcci Rigenerativi e Visioni di Città

2017, 146 Adriana BARONE, Annamaria NESE
Investment in Education, Obesity and Health Behaviours

2017, 145 Annamaria NESE, Roberta TROISI
Illegal Behavior in the Public Administration

2017, 144 Rosamaria D'AMORE, Roberto IORIO, Giuseppe LUBRANO LAVADERA
Exploring the Relationship Between Human Capital and Innovation at the Firm Level: A study on a Sample of European Firms

2017, 143 Cristian BARRA, Roberto ZOTTI
Bank Performance, Financial Stability and Market Competition: do Cooperative and Non-Cooperative Banks Behave Differently?

2016, 142 Adalgiso AMENDOLA
Riforma del terzo settore e ruolo delle associazioni di servizio per lo sviluppo

2016, 141 Cristian BARRA, Giovanna BIMONTE, Luigi SENATORE
Innovation Processes and Environmental Safety

2016, 140 Damiano FIORILLO, Luigi SENATORE
Self Image and Environmental Attitude and Behavior

2016, 139 Maria Rosaria GAROFALO
Oltre il conflitto tra efficienza ed equità: regole e misure di policy per l'uguaglianza di genere

2016, 138 Adalgiso AMENDOLA
Economia ed etica: razionalità economica, mercato e impresa

2015, 137 Antonella BELLINO, Giuseppe CELI
The Migration-Trade Nexus in the Presence of Vertical and Horizontal Product Differentiation

2015, 136 Adalgiso AMENDOLA, Roberto DELL’ANNO, Lavinia PARISI
Happiness, Inequality and Relative Concerns in European Countries

2015, 134 Giuseppina TESTA
The Effect of the Euro Competition Over Innovation Decisions and Labor Productivity

2014, 133 Giovanna BIMONTE, Luigi SENATORE
Capitale e Ricchezza

2014, 133 An Overview on the Application of the Coalitional. Games in Cancer Diagnosis

2014, 132 Domenico MADDALONI

2014, 131 Massimiliano BENCARDINO, Giorgia IOVINO
Analysing and Managing Urban Sprawl and Land Take

2014, 130 Carmen AINA, Fernanda MAZZOTTA, Lavinia PARISI
Bargaining or Efficiency within the Household? The Case of Italy

2014, 129 Adriana BARONE, Annamaria NESE
Body Weight and Academic Performance: Gender and Peer Effects
2013, 128 Adriana BARONE, Annamaria NESE
Family Structure, Children and Night Work: Italy vs. Sweden

2013, 127 Annamaria FERRAGINA
The Impact of FDI on Firm Survival and Employment: A Comparative Analysis for Turkey and Italy

2013, 126 Adalgiso AMENDOLA, Roberto DELL’ANNO
Social Exclusion and Economic Growth: An Empirical Investigation in European Economies

2013, 125 Anna PAPACCIO
Bilateralism and Multilateralism: a Network Approach

2013, 124 Claudio PINTO
Complexity of Treatment, and Changes in Efficiency and Productivity for Directly Managed Italian Hospitals

2012, 123 Giorgia IOVINO
Il Mezzogiorno e la sfida delle energie rinnovabili

2012, 122 Roberto DELL’ANNO, Stefania VILLA
Growth in Transition Countries: Big Bang versus Gradualism

2012, 121 Lavinia PARISI
The Determinants of First and Second Marital Dissolution. Evidence from Britain

2010, 120 Salvatore FARACE, Fernanda MAZZOTTA
Bivariate Probit Models for Analysing how “Knowledge” Affects Innovation and Performance in Small and Medium Sized Firms

2010, 119 Marcello D’AMATO, Christian DI PIETRO
The Evolution of Wealth Distribution in a Model of Educational Investment with Heterogenous Agents

2010, 118 Paolo COCCORESE
Banks as ‘fat cats’: Branching and Price Decisions in a Two-Stage Model of Competition

2010, 117 Sergio DESTEFANIS, Giovanni PICA
The Wage Curve an Italian Perspective

2010, 116 Adalgiso AMENDOLA, Joshy EASAW, Antonio SAVOIA
Inequality in Developing Economies: The Role of Institutional Development

2010 115 Gianluigi COPPOLA
Health, Lifestyle and Growth

2010 114 Teresa AMODIO
Methods of Analysis of Local Tourist Systems

2009 113 Fernanda MAZZOTTA
The Effect of Parental Background on Youth Duration of Unemployment

2009 112 Matteo FRAGETTA
Identification in Structural Vector Autoregressions Through Graphical Modelling and Monetary Policy: A Cross-Country Analysis

2009 111 Bruna BRUNO, Damiano FIORILLO
Why without Pay? The Intrinsic Motivation between Investment and Consumption in Unpaid Labour Supply

2009 110 Maria Rosaria GAROFALO, Annamaria NESE
Social Preferences and the Third Sector: Looking for a Microeconomic Foundation of the Local Development Path

2008 109 Giorgia IOVINO
Gis, ricerca geografica e pianificazione urbanistica: un’applicazione sul centro storico di Benevento

2008 108 Bruna BRUNO
La donna flessibile e il lavoro opportuno

2008 107 Damiano FIORILLO
Offerta di Attività Gratuita in Italia: una analisi micro-econometrica

2007, 106 Shane Niall O’HIGGINS, Marcello D’AMATO, Floro Ernesto CAROLEO, Adriana BARONE
Gone for Good? Determinants of School Dropout in Southern Italy

2007, 105 Ugo COLOMBINO, Annamaria NESE
Preference Heterogeneity in Relation to Museum Services

2007, 104 Giuseppe CELI, Mario SPORTELLI
Harrod’s Dynamics and the Kaldor-Thirlwall Export-led Growth

2007, 103 Francesca BETTIO, Fernanda MAZZOTTA, Giovanni SOLINAS
Costs and prospects for home based Long Term Care in Northern Italy: the Galca survey

2007, 102 Lisa CROSATO, Sergio DESTEFANIS, Piero GANUGI
Technology and Firm Size Distribution: Evidence from Italian Manufacturing

2007, 101 Guglielmo Maria CAPORALE, Alexandros KONTONIKAS
The Euro and Inflation Uncertainty in the european Monetary Union

2006, 100 Francesco Paolo VOLPE
Principio democratico e giustizia nell’amministrazione
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002, 70</td>
<td>Francesco GIORDANO, Fernanda MAZZOTTA</td>
<td>Salario di Riserva, Probabilità di Occupazione ed Efficacia dell’Istruzione Universitaria: un’Analisi sugli Studenti dell’Università di Salerno</td>
</tr>
<tr>
<td>2002, 69</td>
<td>Giuseppe RUSSO</td>
<td>Istuzioni del Mercato del Lavoro e Occupazione: dai Costi di Aggiustamento all’Appropriabilità</td>
</tr>
<tr>
<td>2002, 68</td>
<td>Floro Ernesto CAROLEO, Francesco PASTORE</td>
<td>Training Policy for Youth Unemployed in a Sample of European Countries</td>
</tr>
<tr>
<td>2002, 65</td>
<td>Pietro SENESI</td>
<td>Cyclical dynamics under continuous time equilibrium</td>
</tr>
<tr>
<td>2001, 64</td>
<td>Marcello D'AMATO, Vincenzo GALASSO</td>
<td>E’ la Riforma Dini Politicamente Sostenibile?</td>
</tr>
<tr>
<td>2001, 63</td>
<td>Sergio DESEFFANIS, Omella Wanda MAIETTA</td>
<td>Assessing the Productive Efficiency of Non-Profit Organisations: a Comparative Analysis</td>
</tr>
<tr>
<td>2001, 62</td>
<td>Floro Ernesto CAROLEO, Francesco PASTORE</td>
<td>How fine targeted is ALMP to the youth long term unemployed in Italy?</td>
</tr>
<tr>
<td>2001, 61</td>
<td>Paolo COCCORESE</td>
<td>Strategic Advertising for Entry Deterrence Purposes</td>
</tr>
<tr>
<td>2001, 60</td>
<td>Alessandra AMENDOLA</td>
<td>Modelling Asymmetries in Unemployment Rate</td>
</tr>
<tr>
<td>2001, 59</td>
<td>Sergio DESEFFANIS</td>
<td>Differenziali Territoriali di Produttività ed Efficienza negli Anni '90: i Livelli e l'Andamento</td>
</tr>
<tr>
<td>2001, 58</td>
<td>Giuseppina AUTIERO, Fernanda MAZZOTTA</td>
<td>Job Search Methods: the Choice between the Public and the Private Sector</td>
</tr>
<tr>
<td>2001, 57</td>
<td>Giuseppina AUTIERO, Bruna BRUNO, Fernanda MAZZOTTA</td>
<td>A Correspondence Analysis of Labour Market Institutions</td>
</tr>
<tr>
<td>2000, 56</td>
<td>Giuseppina AUTIERO</td>
<td>Governmental Organized Learning and Coordination Problems: The case of Japan in 1950s</td>
</tr>
<tr>
<td>2000, 55</td>
<td>Giuseppina AUTIERO, Fernanda MAZZOTTA</td>
<td>The Choice of Search Methods: Some Empirical Evidence from Italy</td>
</tr>
<tr>
<td>2000, 53</td>
<td>Giuseppe RUSSO, David VEREDAS</td>
<td>Institutional Rigidities and Employment on the Italian Labour Market: the Dynamic of the Employment in the Large Industrial Firms</td>
</tr>
<tr>
<td>2000, 52</td>
<td>Floro Ernesto CAROLEO</td>
<td>Le Politiche per l'Occupazione in Europa: una Tassonomia Istituzionale</td>
</tr>
<tr>
<td>2000, 51</td>
<td>Andrew NEWELL, Francesco PASTORE</td>
<td>Regional Unemployment and Industrial Restructuring in Poland</td>
</tr>
<tr>
<td>1999, 49</td>
<td>Giuseppe CELI</td>
<td>Vertical and Horizontal Intra-Industry Trade: What is the Empirical Evidence for the UK?</td>
</tr>
<tr>
<td>1999, 48</td>
<td>Cesare IMBRIANI, Filippo REGANATI</td>
<td>Productivity spillovers and regional differences: some evidence on the italian manufacturing sector</td>
</tr>
<tr>
<td>1999, 47</td>
<td>Adalgiso AMENDOLA, Annamaria NESE</td>
<td>L'impatto del background familiare sul livello di istruzione dei figli.</td>
</tr>
<tr>
<td>1998, 45</td>
<td>Floro Ernesto CAROLEO, Fernanda MAZZOTTA</td>
<td>Youth Unemployment and youth employment policies in Italy</td>
</tr>
<tr>
<td>1997, 44</td>
<td>Annamaria NESE</td>
<td>Mobilità intergenerazionale in Italia</td>
</tr>
<tr>
<td>1997, 43</td>
<td>Adriana BARONE, Concetto Paolo VINCI</td>
<td>Fairness: un concetto relativo nell’analisi del mercato del lavoro</td>
</tr>
<tr>
<td>1997, 42</td>
<td>Adriana BARONE, Concetto Paolo VINCI</td>
<td>Wage differentials and factor intensity reversals</td>
</tr>
<tr>
<td>Year</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>1997, 41</td>
<td>Rosa CAPOLUPO</td>
<td>L'ipotesi di convergenza nel recente dibattito sulle teorie della crescita</td>
</tr>
<tr>
<td>1997, 40</td>
<td>Rosa CAPOLUPO</td>
<td>Endogenous Vs exogenous models of growth: the convergenze debate</td>
</tr>
<tr>
<td>1997, 39</td>
<td>Fernanda MAZZOTTA, Annamaria NESE</td>
<td>Transizioni “In and Out” il mercato del lavoro in Italia: un’analisi microeconometrica</td>
</tr>
<tr>
<td>1997, 38</td>
<td>Fernanda MAZZOTTA</td>
<td>Disoccupazione e probabilità di occupazione in Italia: un’analisi su microdati</td>
</tr>
<tr>
<td>1997, 37</td>
<td>Maria Rosaria GAROFALO, Bruna BRUNO</td>
<td>Equivalenza istituzionale* dei modelli di contrattazione sul salario: oltre il dibattito tra centralizzazione e decentramento</td>
</tr>
<tr>
<td>1997, 36</td>
<td>Adalgiso AMENDOLA, Floro Ernesto CAROLEO, Gianluigi COPPOLA</td>
<td>Differenziali territoriali nel mercato del lavoro e sviluppo in Italia</td>
</tr>
<tr>
<td>1996, 35</td>
<td>Adalgiso AMENDOLA</td>
<td>Istituzioni e mercato del lavoro. Deregolazione, occupazione e paradigma istituzionale</td>
</tr>
<tr>
<td>1996, 33</td>
<td>Annamaria NESE</td>
<td>Modelli microeconometrici per l’analisi della domanda abitativa</td>
</tr>
<tr>
<td>1996, 32</td>
<td>Annamaria NESE</td>
<td>Test semiparametrici per modelli parametrici</td>
</tr>
<tr>
<td>1996, 31</td>
<td>Giuseppe CELI</td>
<td>Vertical intra-industry trade and skill intensity in Europe: a cross sector analysis</td>
</tr>
<tr>
<td>1996, 30</td>
<td>Sergio DESTEFANIS</td>
<td>Nominal rigidities and real activity. A cross-industry analysis for Italy, 1951-93</td>
</tr>
<tr>
<td>1996, 29</td>
<td>Cesare IMBRIANI, Filippo REGANATI</td>
<td>International technology transfer into the italian manufacturing sector</td>
</tr>
<tr>
<td>1996, 28</td>
<td>Stefania di SERAFINO, Alberto GANDOLFI</td>
<td>The choice of the Government optimal procurement mechanism: the first-price sealed bid auction with one and/or two winners.</td>
</tr>
<tr>
<td>1996, 27</td>
<td>Raul de LUZENBERGER</td>
<td>Redistribution, and public debt with liquidity constraints</td>
</tr>
<tr>
<td>1996, 26</td>
<td>Bruno CHIARINI</td>
<td>Un modello VAR per la domanda di lavoro</td>
</tr>
<tr>
<td>1995, 25</td>
<td>Maria Rosaria CARILLO, Alberto ZAZZARO</td>
<td>Innovazione tecnologica e distruzione di capitale umano in un modello neo- shumpeteriano di crescita</td>
</tr>
<tr>
<td>1995, 24</td>
<td>Raul de LUZENBERGER</td>
<td>Macroeconomia e politiche redistributive: il caso di vincoli di liquidità</td>
</tr>
<tr>
<td>1995, 23</td>
<td>Annamaria NESE</td>
<td>Tenure choice and demand for housing in Italy</td>
</tr>
<tr>
<td>1995, 22</td>
<td>Filippo REGANATI</td>
<td>La struttura delle preferenze per prodotti orizzontalmente differenziati.</td>
</tr>
<tr>
<td>1995, 21</td>
<td>Sergio DESTEFANIS, Michele LA ROCCA, Cosimo VITALE</td>
<td>Forecasting train ticket sales with linear model-based approaches and with edats</td>
</tr>
<tr>
<td>1995, 20</td>
<td>Stefania di SERAFINO</td>
<td>Bounded rationality and incomplete contracts</td>
</tr>
<tr>
<td>1995, 19</td>
<td>Adalgiso AMENDOLA, Floro E. CAROLEO, Maria Rosaria GAROFALO</td>
<td>Istituzioni, mercato del lavoro e decentramento delle decisioni.</td>
</tr>
<tr>
<td>1995, 18</td>
<td>Niall O’HIGGINS</td>
<td>Why did the youth training scheme reduce the wages of young people? A story of human capital formation, reservation wages and job offers.</td>
</tr>
<tr>
<td>1994, 17</td>
<td>Antonio CARDONE</td>
<td>Misure di efficienza: alcuni aspetti teorici</td>
</tr>
<tr>
<td>1994, 16</td>
<td>Maria Rosaria GAROFALO, Luisa ZANCHI</td>
<td>Neo-corporativismo, centralizzazione e dispersione inter-settoriale dei salari.</td>
</tr>
<tr>
<td>1994, 14</td>
<td>Marcello D’AMATO</td>
<td>Tariffs for a foreign industry with market power under incomplete information on demand</td>
</tr>
<tr>
<td>1994, 13</td>
<td>Raul DE LUZENBERGER, Cesare IMBRIANI, Giancarlo MARINI</td>
<td>Sustainability Issues in the process of European Integration</td>
</tr>
</tbody>
</table>
1994, 12 Riccardo MARSELLI, Antonio CARDONE
Interdipendenza tra regioni: un’analisi su dati di Panel

1993, 11 Adriana BARONE, Concetto Paolo VINCI
Dilemma del prigioniero e persistenza della disoccupazione involontaria

1993, 10 Maria Rosaria CARILLO
Mutamenti strutturali ed offerta di lavoro.

1993, 9 Niall O’HIGGINS
The effectiveness of YTS in Britain: an analysis of sample selection in the determination of employment and earnings

1993, 8 Giuseppe CELI
Politiche valutarie ed integrazione commerciale: l’esperienza dello SME negli anni ’80

1992, 7 Paolo COCCORESE
Attività innovativa e configurazione industriale

1992, 6 Maria Rosaria GAROFALO, Gian Luigi CORINTO
La Razionalità dell’Allocazione del Tempo di Lavoro in Agricoltura. Con un’Applicazione Empirica ad un Sistema Locale attraverso la PL.

1992, 5 Adalgiso AMENDOLA, Maria SCATTAGLIA
Disoccupazione e Tassi di Attività nel Mezzogiorno

1992, 4 Floro Ernesto CAROLEO
La Disoccupazione Strutturale

1991, 3 Giovanni URGA
Dynamic Models of Labour Demand in the Italian Industrial Sector: Theories and Evidence from Panel Data

1991, 2 Adalgiso AMENDOLA
Teoria dei Contratti Impliciti. Rigidità del Salario e Disoccupazione

1991, 1 Guido CELLA
Sulla Integrazione Produttiva Interregionale: il Caso del Mezzogiorno