Università degli Studi di Salerno

CELPE
Centro di Economia del Lavoro e di Politica Economica

Cristian BARRA, Giovanna BIMONTE, Luigi SENATORE

Università degli Studi di Salerno - CELPE
Università degli Studi di Salerno
Università degli Studi di Salerno - CELPE

Innovation Processes and Environmental Safety

Corresponding author
lsenator@unisa.it

Discussion Paper 141
Index

1 Description of the Environmental Innovation Comparative Index 7

2 Data Source Description 8

3 Empirical Analysis and Methodology 9

4 Empirical Results 11

5 Conclusions and Policy Implications 14
Abstract
In this paper, we propose a new index that is able to point out the important relationship between environmental protection and investments in innovation processes. We identify the index with the acronym EICI (Environmental Innovation Comparative Index). This new empirical tool can help to explain how the level of innovation can determine different levels of air pollution in the world. We use OLS models to investigate how this new index impacts the variations in greenhouse gas emissions, and we underline some fundamental policy implications. Considering the levels of the EICI and the empirical analysis of the role of this index then we conclude that enforcing new environmental agreements with some fundamental rules, as the incentive to reduce the technological gaps among the countries, is crucial to protect the environment and at same time stimulate the investment for innovation in all countries of the world.

Keywords Kyoto Agreement, Environmental Index, OLS model, Environmental Policy

JEL Q50, O33, Q52, Q55, Q58.
Introduction

The development of technology is fundamental to reduce global environmental pollution. Promoting and stimulating investments in innovation with the aim of activating a global mechanism of environmental protection is a crucial goal. There is also a substantial gap among countries related to the effort devoted to develop innovative technologies that are able to advance environmental protection and safeguard people's health. In addition, we can affirm that the improvement of environmental protection technologies can reduce costs, increase productivity, create new market opportunities and decrease unemployment. Carrying out unambiguous strategies to find and share new environmental technical innovations in every country of the world has become increasingly important. The health of the environment is a pure public good; thus, it is crucial that all countries expend significant effort to reduce pollution and adopt pro-environmental behaviours and technological innovations as environmental safeguards. Environmental technologies can make a cleaner earth and improve economic performance. The building of the new technologies must be created through different policies and regulatory and financial actions. Some authors suggested to compare policy choices. Li et al. (2014) defined multilateral climate policies can reduce the negative impacts of cross-border externalities, but cannot cure all cross-border externalities. In each country, it is essential that the connections among businesses, investors and regulators accelerate the development of environmental technologies because, as previously stated, new environmental technologies can radically increase profitability and employment and reduce costs. There is a gap in environmental technology innovation among all the countries in the world. We attempt to investigate how this gap can influence the environmental quality of the earth and if it can help to determine more efficient environmental policies. In our analysis, we consider another fundamental element that has influenced CO$_2$ emission up to 2012. We believe that environmental regulation could represent a fundamental tool that is able to reduce pollution and climate change; therefore, we consider the importance and role of the Kyoto Protocol, which was signed in 1997 and became effective in 2005. All of the Countries that ratified it committed themselves to reducing their emissions before the end of 2012. The average target was to decrease the emissions by 5% with respect to the level of 1990. The environmental agreements have not reached the target but an open question is if the introduction of a compulsory bound to the CO$_2$ emission could influence the investments in environmental innovations. This kind of relationship can encourage finding other regulation possibilities to reduce CO$_2$ emission and safeguard the environment. The paper is organized in the following way: in the next section, we illustrate the types of Environmental Indicators. In the third section, we describe an index that is related to environmental innovation and explain the meaning and function of this new index. In the fourth section, we provide a description of the Data Source. The fifth section is devoted to the explanation of the empirical analysis and methodology.
the sixth section, we discuss the Empirical Results and the Evidence. In the seventh section, we provide the conclusions and policy implications.

1 Description of the Environmental Innovation Comparative Index

Our idea is to determine an index that efficiently sets more than one element involved in environmental protection and dynamic economic processes. We devise a strict relationship among environmental protection innovation, the time evolution of this component and the gaps among different countries connected with the creation of new technological solutions to safeguard the environment. We think that there is a strict relationship between the technological gap among the countries and the total amount of greenhouse gas emissions. The crucial point of our approach is to consider all of the countries of the world as absolutely and inextricably linked, which appears to be trivial because it is well known that the effects of greenhouse gas emissions damage important pure public goods like the quality of the environment. However, our opinion is that the diffusion of new technologies to safeguard the environment is a fundamental aspect that is able to influence the capacity of the countries to reduce pollution. Li and al. (2015) showed that there should be trade-off mechanisms between efficiency and equity regarding how to allocate carbon emission reductions among countries. We do not consider the level of technology to be crucial for each country. However, we consider the level of the diffusion of the environmental technology for all of the countries involved in the greenhouse gas emissions reduction process to be crucial.

Starting from these considerations, we determine the following characteristics of the index: first, the index must be a measure of the diffusion of technology among the different countries. This aspect can be established by comparing the technology level of each country with the others. Second, it must determine each comparison for each year considered. Finally, it must define the annual index for each year with reference to all of the countries considered in the sample. To build an efficient index that is able to measure the diffusion of innovation, we consider the new environmental patents of each country (in the following section, we will give a more detailed description of the data). Thus, we build an $EICI$ (Environmental Innovation Comparative Index) for each country in every year considered.

We define the following expression:

$$EICI_{ENV_{i,t}} = \frac{\left[PAT_{ENV_{i,t}} - PAT_{ENV_{w,t}} \right]}{\left[PAT_{ENV_{w,t}} - PAT_{ENV_{d,t}} \right]}$$ (1.1)

where i stands for the country and t is the year considered.

To determine the $EICI$ index for each country, we measure the environmental innovation gap by comparing the difference between the number of patents of each country for each year, $PAT_{ENV_{i,t}}$, and the number of patent of the country with the worst perfor-
mance in the same year, $\text{PAT}_{\text{ENV}w,t}$, with the difference between the patents developed by the country with the best performance in the year, $\text{PAT}_{\text{ENV}b,t}$, and the one with the lowest level, $\text{PAT}_{\text{ENV}w,t}$.

This index can take all values between 0 and 1. For values close to 1, there is homogeneous environmental innovation activity in the set of countries considered. As has been observed, the number of environmental innovation patents has radically increased during the period that we consider in our analysis. This aspect results in the formulation of two fundamental considerations. First, the index has not been influenced by a reduction in the number of environmental patents during the period considered, so the determination of the technological gap has always been economic effectiveness; second, even in the case where only a few countries have developed innovation activities in the environmental field, increasing the total realized patents reinforces the usefulness of the index even more.

2 Data Source Description

The aim of the paper is to define a new environmental index. To determine this indicator, the data analysis considered in our paper is based on the extraction of the number of Environmental Patents from the OECD database. These data are divided into the following seven categories: General Environmental Management; Energy Generation from Renewable and Non-Fossil Sources; Combustion Technologies with Mitigation Potential; Technologies Specific to Climate Change Mitigation; Technologies with Potential or Indirect Contribution to Emissions Mitigation, Emissions Abatement and Fuel Efficiency in Transportation; and Energy Efficiency in Buildings and Lighting. For each category, there is more than one subcategory. The category General Environmental Management is composed of eleven subcategories; the category Energy Generation from Renewable and Non-Fossil Sources is composed of twelve subcategories; the category Combustion Technologies with Mitigation Potential is based on five subcategories; the category Technologies Specific to Climate Change Mitigation is composed of three subcategories; the category Technologies with Potential or Indirect Contribution to Emissions Mitigation is composed of three subcategories; the category Emissions Abatement and Fuel Efficiency in Transportation is composed of six subcategories; and finally, the category Energy Efficiency in Buildings and Lighting is composed of three subcategories. We give more details and descriptions of the subcategories in Table A2 of the Appendix. In the analysis, we consider the previous categories related to 104 countries in the period between 1976 and 2012. Let us describe how we develop the data selection. First, we have considered the Patent Families. This dataset delivers data on patent counts by technology on the basis of Patent Applications to the European Patent Office. In addition, we consider the Reference Country for patents in environmental innovation including the Applicant’s Country. These applicants are the owners of the
patents at the time of application, and in this way, we measure the degree of control of patents by each country’s residents, wherever the invention is made. The reason for the repartition is connected to the necessity of evaluating the level of innovation carefully for each country. That is, an optimal method to reveal the innovativeness of firms of a given country, whatever the location of their research facilities. Furthermore, we also considered the reference data. In particular, we count the Date of Application. Usually, the inventor applies in his or her country of residence, then he or she has one year of legal delay to apply for protection of the original invention in other countries (application). For this reason, it occurs generally one year after a foreign priority, and it must be taken into consideration that by using the application date, we introduce a bias due to a one-year lag between residents and foreigners. The data related to the CO₂ Emissions consider the emissions as those stemming from the burning of fossil fuels and the manufacture of cement. They include carbon dioxide produced during consumption of solid, liquid, and gas fuels and gas flaring. We extract all of the information about the CO₂ Emissions from the World Bank Database, while the data of the real GDP and the total population have been pulled from the Penn World Table version 8.0.

3 Empirical Analysis and Methodology

The Empirical Analysis aims to verify how the EICI could have been influenced the relationship between emission per capita and the Real GDP per capita during the period 1977-2010 while also paying attention to the effect of the Kyoto Agreement on our estimation. The emission per capita is equal to the Total World Emission divided by the population expressed in millions, while the Real GDP is extracted from the Penn World Table (PWT). We sum up three databases (PWT, World Bank Database and OECD), and we use a 3-letter country code and the year beginning with the considered sample to construct the EICI indicator. The 68 countries are divided by geographic areas to check the localization effect and to build a more homogeneous sample.

We estimate the following model:

\[
\Delta \ln CO₂c_{it} = a + b₁ \Delta \ln RGDPc_{it} + b₂ \Delta \ln RGDPc_{it}^2 + b₃ EICI_{it} + b₄ TIME + \epsilon_{it} \tag{3.1}
\]

where CO₂ describes the emission per capita at time t for each country and RGDP is the Real GDP per capita at time t for each country. The variable EICI corresponds to the indicator related to the gap between the level of the environmental patents at time

1 Generally, the PWT was developed by Robert Summers and Alan Heston (and others) to facilitate consistent national accounts comparisons across countries as well as over time. It is an attempt to get closer to a System of Real National Accounts (SRNA) that makes interspatial comparisons possible. The latest version 8.0 of the PWT contains 29 variables for 167 countries (with two versions for China). The approximately 6,000 annual time series begin as early as 1950 and end generally in 2011.

2 PWT is selected due to its more detailed temporary and spatial information compared with the WBD; moreover, we can examine a sample of 68 countries instead of 60 countries when using the WBD.
for each country \(i \). Lastly, the variable \(\text{TIME} \) defines the time dummies that capture the observable and non-observable exogenous effects that could bias the estimation. The coefficients \(b \) and \(\epsilon \) are, respectively, the unknown coefficient and the error term of the regression analysis. We use the natural logarithm to reduce the skewness of the data, in addition to capturing the elasticity of \(\text{CO}_2 \) and \(\text{RGDP} \). We have also tested if the variables follow a unit root process or are stationary in heterogeneous panels using the Im-Pesaran-Shin Procedure (2003). By using the panel unit root test proposed by Im-Pesaran-Shin (2003), we check whether the variables concerning \(\ln \text{CO}_2 \) and \(\ln \text{RGDP} \) follow a stationary trend, in which the optimal lags of the variables are identified using the Akaike information criterion. The objective is to decide which variables should enter in the proposed model in growth form and which variables should enter the model in their level form. The results of the unit root are summarized in Table 1, excluding and including the time trend.

<table>
<thead>
<tr>
<th></th>
<th>Without Trend</th>
<th>With Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_t)-bar</td>
<td>Statistic</td>
<td>p-value</td>
</tr>
<tr>
<td>All Sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln \text{CO}_2)</td>
<td>-0.19</td>
<td>0.43</td>
</tr>
<tr>
<td>(\Delta \ln \text{CO}_2)</td>
<td>-38.85</td>
<td>0.00</td>
</tr>
<tr>
<td>(\ln \text{RGDP})</td>
<td>4.85</td>
<td>1.00</td>
</tr>
<tr>
<td>(\Delta \ln \text{RGDP})</td>
<td>-26.39</td>
<td>0.00</td>
</tr>
<tr>
<td>NO REG1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln \text{CO}_2)</td>
<td>-1.02</td>
<td>0.15</td>
</tr>
<tr>
<td>(\Delta \ln \text{CO}_2)</td>
<td>-31.36</td>
<td>0.00</td>
</tr>
<tr>
<td>(\ln \text{RGDP})</td>
<td>2.55</td>
<td>0.99</td>
</tr>
<tr>
<td>(\Delta \ln \text{RGDP})</td>
<td>-22.36</td>
<td>0.00</td>
</tr>
<tr>
<td>NO REG2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln \text{CO}_2)</td>
<td>0.06</td>
<td>0.52</td>
</tr>
<tr>
<td>(\Delta \ln \text{CO}_2)</td>
<td>-35.78</td>
<td>0.00</td>
</tr>
<tr>
<td>(\ln \text{RGDP})</td>
<td>4.44</td>
<td>1.00</td>
</tr>
<tr>
<td>(\Delta \ln \text{RGDP})</td>
<td>-23.51</td>
<td>0.00</td>
</tr>
<tr>
<td>NO REG3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln \text{CO}_2)</td>
<td>-0.35</td>
<td>0.36</td>
</tr>
<tr>
<td>(\Delta \ln \text{CO}_2)</td>
<td>-34.40</td>
<td>0.00</td>
</tr>
<tr>
<td>(\ln \text{RGDP})</td>
<td>5.61</td>
<td>1.00</td>
</tr>
<tr>
<td>(\Delta \ln \text{RGDP})</td>
<td>-24.17</td>
<td>0.00</td>
</tr>
<tr>
<td>NO REG4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln \text{CO}_2)</td>
<td>0.21</td>
<td>0.58</td>
</tr>
<tr>
<td>(\Delta \ln \text{CO}_2)</td>
<td>-38.13</td>
<td>0.00</td>
</tr>
<tr>
<td>(\ln \text{RGDP})</td>
<td>5.22</td>
<td>1.00</td>
</tr>
<tr>
<td>(\Delta \ln \text{RGDP})</td>
<td>-25.53</td>
<td>0.00</td>
</tr>
<tr>
<td>NO REG5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln \text{CO}_2)</td>
<td>0.36</td>
<td>0.64</td>
</tr>
<tr>
<td>(\Delta \ln \text{CO}_2)</td>
<td>-37.87</td>
<td>0.00</td>
</tr>
<tr>
<td>(\ln \text{RGDP})</td>
<td>5.22</td>
<td>1.00</td>
</tr>
<tr>
<td>(\Delta \ln \text{RGDP})</td>
<td>-26.11</td>
<td>0.00</td>
</tr>
<tr>
<td>NO REG6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln \text{CO}_2)</td>
<td>-0.40</td>
<td>0.35</td>
</tr>
<tr>
<td>(\Delta \ln \text{CO}_2)</td>
<td>-37.87</td>
<td>0.00</td>
</tr>
<tr>
<td>(\ln \text{RGDP})</td>
<td>4.29</td>
<td>1.00</td>
</tr>
<tr>
<td>(\Delta \ln \text{RGDP})</td>
<td>-26.11</td>
<td>0.00</td>
</tr>
<tr>
<td>NO REG7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln \text{CO}_2)</td>
<td>-0.09</td>
<td>0.47</td>
</tr>
<tr>
<td>(\Delta \ln \text{CO}_2)</td>
<td>-37.69</td>
<td>0.00</td>
</tr>
<tr>
<td>(\ln \text{RGDP})</td>
<td>4.66</td>
<td>1.00</td>
</tr>
<tr>
<td>(\Delta \ln \text{RGDP})</td>
<td>-25.57</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 1 IM-PESARAN-SHIN UNIT ROOT TEST

To give more credit to our findings, the same test is also performed using different subsamples or panels, i.e., excluding countries belonging to the same geographical
location or region. In all cases, the variables for the unit root null hypothesis are not rejected. This implies that the variables are not stationary, and they have to enter in the proposed model in growth form. For more clarification, the test is also performed by taking variables in growth form. As expected, the variables in growth form follow a stationary trend. Thus, the test reported in Table [1] confirms the presence of unit-root or non-stationary variables (emission per capita and real GDP per capita). For that reason, we have considered the first differences to guarantee the stationarity among the variables introduced in the model. Then, the symbol Δ reported in equation (3.1) stands for first difference. Our model, described in equation (3.1), is estimated using a pooled OLS model.

As usual, the correctness of the model is checked with the Sargan test of over-identifying restrictions for validity of instruments, while the Arellano-Bond test is used for testing autocorrelation between error terms over time. OLS regressions and other procedures are carried out using STATA 13.1.

4 Empirical Results

The preliminary empirical investigation considers the simple relationship between the $EICI$ and the introduction of the Kyoto Agreement. Therefore, we consider the years from 1977 to 2010. At same time, we know that the Kyoto Protocol was adopted in 1997 and became active in February 2005. Canada was the first signatory to announce its withdrawal from the Kyoto Protocol in 2011, and the agreement expired in 2012. Thus, the first question is if there can be a kind of relationship between our index and the environmental agreement. As is well known, the Kyoto Protocol did not have a positive impact on the greenhouse gas emission. One of the ways to reduce CO_2 emissions is to reduce the GDP, but if this is not the approach chosen by the countries, the other trivial and natural method is not to reduce production but stimulate innovations to safeguard the environment. As we note in Figure [1], the values of $EICI$ during the period are very close to 0, so there is a low level of diffusion of innovation in the set of countries considered. Given that the number of patents for environmental innovations increased during the entire period considered, it is intuitively clear that there are countries that innovate much more than others.
In addition, we underline that since 1997, the *EICI* has had values close 0.04 and has increased constantly since 2005. After this simple graph, we do not yet know what kind of connection exists between these two variables and how they could eventually influence the reduction of CO$_2$ emissions in the atmosphere. We realize how the proposed *EICI* indicator influences the link between CO$_2$ emissions and Real GDP in two fundamental cases: on the whole sample and excluding the areas with the same geographical affinity (see the repartition in Table A1 in the Appendix).

In addition, it is necessary to show that all of the Arellano-Bond orthogonality conditions are based on the assumption that the error term in the levels equation is not autocorrelated. The aim of the Arellano-Bond autocorrelation test is to check this assumption. It is clear that if the error term in the levels equation is not autocorrelated, then the error term in the first-difference equation has negative first-order autocorrelation and 0 second order autocorrelation. In the end, if we reject the hypothesis that there is 0 second order autocorrelation in the residuals of the first difference equation, consequently we also reject the hypothesis that the error term in the levels equation is not autocorrelated. This condition suggests that the AB orthogonality conditions are not valid regardless of which lags we use as instruments. We observe clear positive impacts of the *EICI* on the reduction of greenhouse gas emissions in the OLS estimator:
Table 2 OLS with Kyoto

t statistics in parentheses *, **, *** stand for significant at 10%, 5% and 1%, respectively.

In Table 2 and Table 3, we perform an OLS analysis, the number of moment restrictions equals the number of unknown parameters, even in the case that there is an influence of the \(EICI \) on the reduction of the greenhouse gas emissions. First, we can observe that there is no loss of significance of the \(EICI \) comparing the results with or without considering the Kyoto Agreement. Second, even in that case where we alternatively exclude the different geographical areas, the \(EICI \) remains significance.

Table 3 OLS without Kyoto

t statistics in parentheses *, **, *** stand for significant at 10%, 5% and 1%, respectively.
Furthermore, as shown in Figure [1] the EICI is increasing, especially during the last years, but it is still very small and close to 0. However, it can reach a value of 1 when innovation in environmental technologies are homogeneously distributed among all the countries in the world.

5 Conclusions and Policy Implications

Starting from the Empirical Evidence, we can describe many possibilities to build environmental and economic policies that are able to improve air quality and reduce the greenhouse effect. The characteristics of the EICI clearly note the heterogeneity among the countries with respect to the level of innovation in environmental technology. However, it also becomes clear from the empirical evidence that there could be an inverse relationship between the EICI and CO₂ emissions. The absence of a global policy that pushes all countries to allocate resources to increase their investments in new technologies to protect the environment is a huge and complex problem. The environment is a quintessential pure public good. Therefore, finding a joint solution to safeguard it is incredibly important. All of the policies included in the development of investments for innovation must be considered and designed in a coordinated way. The most important thing is to organize and stimulate innovative processes in every country. In the case that only a few countries innovate, they can inevitably restrict access to the new technologies, limiting the diffusion of the innovations and even the reduction of the greenhouse gas emissions in the long run. Therefore, the empirical analysis considers the introduction of the Kyoto Agreement. Considering the policy implications, the open question is if any kind of agreement can induce innovation or if the next environmental treaty has to determine the conditions for the use and promotion of innovations to efficiently reduce greenhouse gas emissions. From our point of view, based on the results of the EICI and on the empirical analysis of the role of this index in the dynamics related to greenhouse gas emissions, enforcing new environmental agreements with some fundamental rules is crucial to protect the environment and at same time stimulate innovation in all countries of the world. In other words, an effective agreement must make the adoption of virtuous environmental behaviours convenient.
Appendix

<table>
<thead>
<tr>
<th>REG1</th>
<th>REG2</th>
<th>REG3</th>
<th>REG4</th>
<th>REG5</th>
<th>REG6</th>
<th>REG7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Austria</td>
<td>Argentina</td>
<td>Djibouti</td>
<td>Bermuda</td>
<td>India</td>
<td>Kenya</td>
</tr>
<tr>
<td>China</td>
<td>Belgium</td>
<td>Brazil</td>
<td>Egypt, Arab Rep.</td>
<td>Canada</td>
<td>Pakistan</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Hong Kong SAR, China</td>
<td>Bulgaria</td>
<td>Chile</td>
<td>Iran, Islamic Rep.</td>
<td>United States</td>
<td>Sri Lanka</td>
<td>South Africa</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Cyprus</td>
<td>Colombia</td>
<td>Israel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Denmark</td>
<td>Costa Rica</td>
<td>Jordan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea, Rep.</td>
<td>Finland</td>
<td>Ecuador</td>
<td>Kuwait</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>France</td>
<td>El Salvador</td>
<td>Lebanon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mongolia</td>
<td>Greece</td>
<td>Guatemala</td>
<td>Malta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>Hungary</td>
<td>Jamaica</td>
<td>Saudi Arabia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>Iceland</td>
<td>Mexico</td>
<td>Tunisia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>Ireland</td>
<td>Panama</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>Italy</td>
<td>Peru</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Luxembourg</td>
<td>Trinidad and Tobago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Netherlands</td>
<td>Uruguay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Portugal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saudi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turkey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>United Kingdom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A1 Geographical ripartition
<table>
<thead>
<tr>
<th>Sub-category</th>
<th>Total Patents</th>
<th>pat_1_1</th>
<th>pat_1_2</th>
<th>pat_2_1</th>
<th>pat_2_2</th>
<th>pat_2_3</th>
<th>pat_2_4</th>
<th>pat_2_5</th>
<th>pat_2_6</th>
<th>pat_2_7</th>
<th>pat_2_8</th>
<th>pat_2_9</th>
<th>pat_2_10</th>
<th>pat_2_11</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Environmental Management</td>
<td></td>
</tr>
<tr>
<td>Air pollution abatement (from stationary sources)</td>
<td></td>
</tr>
<tr>
<td>Waste pollution abatement</td>
<td></td>
</tr>
<tr>
<td>Waste management - not elsewhere classified</td>
<td></td>
</tr>
<tr>
<td>Hazardous waste recycling</td>
<td></td>
</tr>
<tr>
<td>Particulates from waste</td>
<td></td>
</tr>
<tr>
<td>Inorganic and organic waste recovery</td>
<td></td>
</tr>
<tr>
<td>Water remediation</td>
<td></td>
</tr>
<tr>
<td>Environmental monitoring</td>
<td></td>
</tr>
<tr>
<td>Energy generation from renewable and non-fossil sources</td>
<td></td>
</tr>
<tr>
<td>Renewable energy generation</td>
<td></td>
</tr>
<tr>
<td>Wind energy</td>
<td></td>
</tr>
<tr>
<td>Solar thermal energy</td>
<td></td>
</tr>
<tr>
<td>Solar photovoltaic (PV) energy</td>
<td></td>
</tr>
<tr>
<td>Geothermal energy</td>
<td></td>
</tr>
<tr>
<td>Marine energy</td>
<td></td>
</tr>
<tr>
<td>Geothermal energy (excluding ocean)</td>
<td></td>
</tr>
<tr>
<td>Hydro-energy - total, stream or dams</td>
<td></td>
</tr>
<tr>
<td>Hydro-energy - conventional</td>
<td></td>
</tr>
<tr>
<td>Energy generation from fuels of non-fossil origin</td>
<td></td>
</tr>
<tr>
<td>Refineries</td>
<td></td>
</tr>
<tr>
<td>Fuel from waste (e.g. methanol)</td>
<td></td>
</tr>
<tr>
<td>Combustion technologies with mitigation potential</td>
<td></td>
</tr>
<tr>
<td>(e.g. using fossil fuels, biomass, waste, etc.)</td>
<td></td>
</tr>
<tr>
<td>Technologies for improved heat output efficiency (Combined combustion)</td>
<td></td>
</tr>
<tr>
<td>Heat utilization is combination or generation of waste</td>
<td></td>
</tr>
<tr>
<td>Combined heat and power (CHP)</td>
<td></td>
</tr>
<tr>
<td>Combined cycle (e.g. CCR, CCGT, CCCG, CCGT+CCS)</td>
<td></td>
</tr>
<tr>
<td>Technologies for improved heat output efficiency (efficient combustion or heat island)</td>
<td></td>
</tr>
<tr>
<td>Technologies specific to climate change mitigation</td>
<td></td>
</tr>
<tr>
<td>Capture, storage, transportation, or disposal of greenhouse gases</td>
<td></td>
</tr>
<tr>
<td>CO2 capture and storage (CCS)</td>
<td></td>
</tr>
<tr>
<td>Capture and disposal of greenhouse gases other than carbon dioxide (D, K, C, H, FC)</td>
<td></td>
</tr>
<tr>
<td>Technologies with potential or indirect contribution to emissions mitigation</td>
<td></td>
</tr>
<tr>
<td>Energy storage</td>
<td></td>
</tr>
<tr>
<td>Hydrogen, electricity (from non-carbon sources), distribution, and storage</td>
<td></td>
</tr>
<tr>
<td>Emissions abatement and fuel efficiency in transportation</td>
<td></td>
</tr>
<tr>
<td>Technologies specific to propulsion using conventional combustion engines (ICE) (e.g. conventional petrol/gasoline vehicle, hybrid vehicle with ICE)</td>
<td></td>
</tr>
<tr>
<td>Emission control (NOx, CO, HC, PM)</td>
<td></td>
</tr>
<tr>
<td>Technologies specific to propulsion using electrified vehicles (e.g. electric vehicle, hybrid vehicle) (e.g. electric motor and internal combustion engine)</td>
<td></td>
</tr>
<tr>
<td>Fuel efficiency improving vehicle design (e.g. aerodynamics)</td>
<td></td>
</tr>
<tr>
<td>Energy efficiency in buildings and lighting</td>
<td></td>
</tr>
<tr>
<td>Energy efficiency in buildings and lighting</td>
<td></td>
</tr>
<tr>
<td>Heating (ind. water and space heating, air-conditioning)</td>
<td></td>
</tr>
<tr>
<td>Lighting (ind. CFL, LED)</td>
<td></td>
</tr>
</tbody>
</table>

Table A2 Sub-categories list
References

[10] Li, A., Zhang, Z., and Zhang, A., 2015, Why are there large differences in performances when the same carbon emission reductions are achieved in different countries?. Journal of Cleaner Production, 103, 309-318.

CELPE’s Discussion Papers

2016, 140 Damiano FIORILLO, Luigi SENATORE
Self Image and Environmental Attitude and Behavior

2016, 139 Maria Rosaria GAROFALO
Oltre il conflitto tra efficienza ed equità: regole e misure di policy per l’uguaglianza di genere

2016, 138 Adalgiso AMENDOLA
Economia ed etica: razionalità economica, mercato e impresa

2015, 137 Antonella BELLINO, Giuseppe CELI
The Migration-Trade Nexus in the Presence of Vertical and Horizontal Product Differentiation

2015, 136 Adalgiso AMENDOLA, Roberto DELL'ANNO, Lavinia PARISI
Happiness, Inequality and Relative Concerns in European Countries

2015, 135 Giuseppina TESTA
The Effect of the Euro Competition Over Innovation Decisions and Labor Productivity

2014, 134 Antonio CARDONE
Capitale e Ricchezza

2014, 133 Giovanna BIMONTE, Luigi SENATORE
An Overview on the Application of the Coalitional. Games in Cancer Diagnosis

2014, 132 Domenico MADDALONI

2014, 131 Massimiliano BENCARDINO, Giorgia IOVINO
Analysing and Managing Urban Sprawl and Land Take

2014, 130 Carmen AINA, Fernanda MAZZOTTA, Lavinia PARISI
Bargaining or Efficiency within the Household? The Case of Italy

2014, 129 Adriana BARONE, Annamaria NESE
Body Weight and Academic Performance: Gender and Peer Effects

2013, 128 Adriana BARONE, Annamaria NESE
Family Structure, Children and Night Work: Italy vs. Sweden

2013, 127 Annamaria FERRAGINA
The Impact of FDI on Firm Survival and Employment: A Comparative Analysis for Turkey and Italy

2013, 126 Adalgiso AMENDOLA, Roberto DELL'ANNO
Social Exclusion and Economic Growth: An Empirical Investigation in European Economies
2013, 125 Anna PAPACCIO
Bilateralism and Multilateralism: a Network Approach

2013, 124 Claudio PINTO
Complexity of Treatment, and Changes in Efficiency and Productivity for Directly Managed Italian Hospitals

2012, 123 Giorgia IOVINO
Il Mezzogiorno e la sfida delle energie rinnovabili

2012, 122 Roberto DELL’ANNO, Stefania VILLA
Growth in Transition Countries: Big Bang versus Gradualism

2012, 121 Lavinia PARISI
The Determinants of First and Second Marital Dissolution. Evidence from Britain

2010, 120 Salvatore FARACE, Fernanda MAZZOTTA
Bivariate Probit Models for Analysing how “Knowledge”Affects Innovation and Performance in Small and Medium Sized Firms

2010, 119 Marcello D’AMATO, Christian DI PIETRO
The Evolution of Wealth Distribution in a Model of Educational Investment with Heterogenous Agents

2010, 118 Paolo COCCORESE
Banks as ‘fat cats’: Branching and Price Decisions in a Two-Stage Model of Competition

2010, 117 Sergio DESTEFANIS, Giovanni PICA
The Wage Curve an Italian Perspective

2010, 116 Adalgiso AMENDOLA, Joshy EASAW, Antonio SAVOIA
Inequality in Developing Economies: The Role of Institutional Development

2010, 115 Gianluigi COPPOLA
Health, Lifestyle and Growth

2010, 114 Teresa AMODIO
Methods of Analysis of Local Tourist Systems

2009, 113 Fernanda MAZZOTTA
The Effect of Parental Background on Youth Duration of Unemployment

2009, 112 Matteo FRAGETTA
Identification in Structural Vector Autoregressions Through Graphical Modelling and Monetary Policy: A Cross-Country Analysis

2009, 111 Bruna BRUNO, Damiano FIORILLO
Why without Pay? The Intrinsic Motivation between Investment and Consumption in Unpaid Labour Supply
2009 110 Maria Rosaria GAROFALO, Annamaria NESE
Social Preferences and the Third Sector: Looking for a Microeconomic Foundation of the Local Development Path

2008 109 Giorgia IOVINO
Gis, ricerca geografica e pianificazione urbanistica: un’applicazione sul centro storico di Benevento

2008 108 Bruna BRUNO
La donna flessibile e il lavoro opportuno

2008 107 Damiano FIORILLO
Offerta di Attività Gratuita in Italia: una analisi micro-econometrica

2007, 106 Shane Niall O’HIGGINS, Marcello D’AMATO, Floro Ernesto CAROLEO, Adriana BARONE
Gone for Good? Determinants of School Dropout in Southern Italy

2007, 105 Ugo COLOMBINO, Annamaria NESE
Preference Heterogeneity in Relation to Museum Services

2007, 104 Giuseppe CELI, Mario SPORTELLI
Harrod’s Dynamics and the Kaldor-Thirlwall Export-led Growth

2007, 103 Francesca BETTIO, Fernanda MAZZOTTA, Giovanni SOLINAS
Costs and prospects for home based Long Term Care in Northern Italy: the Galca survey

2007, 102 Lisa CROSATO, Sergio DESTEFANIS, Piero GANUGI
Technology and Firm Size Distribution: Evidence from Italian Manufacturing

2007, 101 Guglielmo Maria CAPORALE, Alexandros KONTONIKAS
The Euro and Inflation Uncertainty in the european Monetary Union

2006, 100 Francesco Paolo VOLPE
Principio democratico e giustizia nell’amministrazione

2006, 99 Niall O’HIGGINS
Still With Us After All of These Years: Trends in Youth Labour Market Entry, Home-Leaving And Human Capital Accumulation in Italy 1993-2003

2005, 98 Floro Ernesto CAROLEO, Gianluigi COPPOLA
The Impact of the Institutions on Regional Unemployment Disparities

2005, 97 Carlo ALTAVILLA, Antonio GAROFALO, Concetto Paolo VINCI
Is the Discouraged Worker Effect Time-Varying?

2005, 96 F. BUSATO, B. CHIARINI, P. DE ANGELIS, E. MARZANO
Capital Subsidies and Underground Production
2005, 95 Lucio Valerio SPAGNOLO, Mario CERRATO
No euro please, We're British!

2005, 94 Roberto BASILE, Mauro COSTANTINI, Sergio DESTEFANIS
Unit root and cointegration tests for cross-sectionally correlated panels. Estimating regional production functions

2005, 93 Sergio DESTEFANIS, Raquel FONSECA
Matching Efficiency and Labour Market Reform in Italy. A Macroeconometric Assessment

2005, 92 Cesare IMBRIANI, Antonio LOPES
Banking System Efficiency and the Dualistic Development of the Italian Economy in the Nineties

2005, 91 Carlo ALTAVILLA, Antonio GAROFALO, Concetto Paolo VINCI
Designing the Optimal Length of Working Time

2005, 90 Marco MANACORDA, Barbara PETRONGOLO

2004, 89 Roberta TROISI
Teoria dell'impresa e responsabilità parapenale: le implicazioni organizzativo-gestionali

2004, 88 Roberta TROISI
Enti non profit: tipologie ed opzioni organizzative

2004, 87 Lavinia PARISI
La povertà: una rassegna sul confronto tra due approcci. Capability vs. Unidimensionalità

2004, 86 Giuseppe CELI
Quality Differentiation, Vertical Disintegration and the Labour Market Effects of Intra-Industry Trade

2004, 85 Niall O’HIGGINS
Recent Trends in Youth Labour Markets and Employment Policy in Europe and Central Asia

2004, 84 Carlo ALTAVILLA, Floro Ernesto CAROLEO
Evaluating Asymmetries in Active Labour Policies: The Case of Italy

2004, 83 Floro Ernesto CAROLEO, Francesco PASTORE
La disoccupazione giovanile in Italia. La riforma dei sistemi d'istruzione e di formazione professionale come alternativa alla flessibilità numerica per accrescere l'occupabilità

2004, 82 Francesco PASTORE, Izabela MARCINKOWSKA
The Gender Wage Gap among Young People in Italy

2004, 81 Elisabetta MARZANO
Dual Labour Market Theories And Irregular Jobs: Is There a Dualism Even in The Irregular Sector?
2004, 80 Corrado ANDINI
Unemployment and Welfare Partecipation in a Structural VAR: Rethinking the 1990s in the United States

2004, 79 Floro Ernesto CAROLEO
Fondamenti teorici della rigidità salariale nell’ambito dei “Non Market clearing Models”

2004, 78 Adalgiso AMENDOLA, Floro Ernesto CAROLEO, Gianluigi COPPOLA
Regional Disparities in Europe

2003, 77 Fernanda MAZZOTTA
Flessibilità, povertà e istruzione: un approccio Sen - istituzionale

2003, 76 Adalgiso AMENDOLA, Annamaria NESE
Mobilità intergenerale nel livello d'istruzione nella società femminile italiana ed endogenità del titolo di studio in un modello di partecipazione alla Forza Lavoro.

2003, 74 Antonio LOPES
Innovazione nel Sistema Creditizio del Mezzogiorno negli Anni Novanta

2003, 73 Sergio DESTEFANIS, Vania SENA
Public Capital and Total Factor Productivity New Evidence from the Italian Regions

2003, 72 Giuseppina AUTIERO, Bruna BRUNO
Social Preferences in Wage Bargaining: a Neocorporatist Approach

2003, 71 Gianluigi COPPOLA, Maria Rosaria GAROFALO, Fernanda MAZZOTTA
Industrial Localisation and Economic Development. A Case Study

2002, 70 Francesco GIORDANO, Fernanda MAZZOTTA
Salario di Riserva, Probabilità di Occupazione ed Efficacia dell'Istruzione Universitaria: un’Analisi sugli Studenti dell’Università di Salerno

2002, 69 Giuseppe RUSSO
Istituzioni del Mercato del Lavoro e Occupazione: dai Costi di Aggiustamento all’Appropriabilità

2002, 68 Floro Ernesto CAROLEO, Francesco PASTORE
Training Policy for Youth Unemployed in a Sample of European Countries

2002, 67 Maria Rosaria GAROFALO, Maria Rosaria SUPINO

2002, 65 Pietro SENESI
Cyclical dynamics under continuous time equilibrium

2001, 64 Marcello D’AMATO, Vincenzo GALASSO
E’ la Riforma Dini Politicamente Sostenibile?
2001, 63 Sergio DESTEFANIS, Ornella Wanda MAIETTA
Assessing the Productive Efficiency of Non-Profit Organisations: a Comparative Analysis

2001, 62 Floro Ernesto CAROLEO, Francesco PASTORE
How fine targeted is ALMP to the youth long term unemployed in Italy?

2001, 61 Paolo COCCORESE
Strategic Advertising for Entry Deterrence Purposes

2001, 60 Alessandra AMENDOLA
Modelling Asymmetries in Unemployment Rate

2001, 59 Sergio DESTEFANIS
Differenziali Territoriali di Produttività ed Efficienza negli Anni ‘90: i Livelli e l’Andamento

2001, 58 Giuseppina AUTIERO, Fernanda MAZZOTTA
Job Search Methods: the Choice between the Public and the Private Sector

2001, 57 Giuseppina AUTIERO, Bruna BRUNO, Fernanda MAZZOTTA
A Correspondence Analysis of Labour Market Institutions

2000, 56 Giuseppina AUTIERO
Governmental Organized Learning and Coordination Problems: The case of Japan in1950s

2000, 55 Giuseppina AUTIERO, Fernanda MAZZOTTA
The Choice of Search Methods: Some Empirical Evidence from Italy

2000, 54 Giuseppe CELI

2000, 53 Giuseppe RUSSO, David VEREDAS
Institutional Rigidities and Employment on the Italian Labour Market: the Dynamic of the Employment in the Large Industrial Firms.

2000, 52 Floro Ernesto CAROLEO
Le Politiche per l’Occupazione in Europa: una Tassonomia Istituzionale

2000, 51 Andrew NEWELL, Francesco PASTORE
Regional Unemployment and Industrial Restructuring in Poland

1999, 50 Giuseppe CELI, Alasdair SMITH
Quality Differentiation and the Labour Market Effects of International Trade.

1999, 49 Giuseppe CELI
Vertical and Horizontal Intra-Industry Trade: What is the Empirical Evidence for the UK?
1999, 48 Cesare IMBRIANI, Filippo REGANATI
Productivity spillovers and regional differences: some evidence on the italian manufacturing sector.

1999, 47 Adalgiso AMENDOLA, Annamaria NESE
L'impatto del background familiare sul livello d'istruzione dei figli.

1998, 46 Adalgiso AMENDOLA, Annamaria NESE
Mobilità intergenerazionale nella società femminile italiana.

1998, 45 Floro Ernesto CAROLEO, Fernanda MAZZOTTA
Youth Unemployment and youth employment policies in Italy.

1997, 44 Annamaria NESE
Mobilità intergenerazionale in Italia

1997, 43 Adriana BARONE, Concetto Paolo VINCI
Fairness: un concetto relativo nell'analisi del mercato del lavoro

1997, 42 Adriana BARONE, Concetto Paolo VINCI
Wage differentials and factor intensity reversals

1997, 41 Rosa CAPOLUPO
L'ipotesi di convergenza nel recente dibattito sulle teorie della crescita

1997, 40 Rosa CAPOLUPO
Endogenous Vs exogenous models of growth: the convergenze debate

1997, 39 Fernanda MAZZOTTA, Annamaria NESE
Transizioni ‘In and Out’ il mercato del lavoro in Italia: un’analisi microeconometrica

1997, 38 Fernanda MAZZOTTA
Disoccupazione e probabilità di occupazione in Italia: un’analisi su microdati

1997, 37 Maria Rosaria GAROFALO, Bruna BRUNO
Equivalenza istituzionale* dei modelli di contrattazione sul salario: oltre il dibattito tra centralizzazione e decentramento

1997, 36 Adalgiso AMENDOLA, Floro Ernesto CAROLEO, Gianluigi COPPOLA
Differenziali territoriali nel mercato del lavoro e sviluppo in Italia

1996, 35 Adalgiso AMENDOLA
Istituzioni e mercato del lavoro. Deregolazione, occupazione e paradigma istituzionale

1996, 33 Annamaria NESE
Modelli microeconometrici per l’analisi della domanda abitativa
1996, 32 Annamaria NESE
Test semiparametrici per modelli parametrici

1996, 31 Giuseppe CELI
Vertical intra-industry trade and skill intensity in Europe: a cross sector analysis

1996, 30 Sergio DESTEFANIS
Nominal rigidities and real activity. A cross-industry analysis for Italy, 1951-93

1996, 29 Cesare IMBRIANI, Filippo REGANATI
International technology transfer into the italian manufacturing sector

1996, 28 Stefania di SERAFINO, Alberto GANDOLFI
The choice of the Government optimal procurement mechanism: the first-price sealed bid auction with one and/or two winners.

1996, 27 Raul de LUZENBERGER
Redistribution, and public debt with liquidity constraints

1996, 26 Bruno CHIARINI
Un modello VAR per la domanda di lavoro

1995, 25 Maria Rosaria CARILLO, Alberto ZAZZARO
Innovazione tecnologica e distruzione di capitale umano in un modello neo-shumpeteriano di crescita.

1995, 24 Raul de LUZENBERGER
Macroeconomia e politiche redistributive: il caso di vincoli di liquidità

1995, 23 Annamaria NESE
Tenure choice and demand for housing in Italy

1995, 22 Filippo REGANATI
La struttura delle preferenze per prodotti orizzontalmente differenziati.

1995, 21 Sergio DESTEFANIS, Michele LA ROCCA, Cosimo VITALE
Forecasting train ticket sales with linear model-based approaches and with edats

1995, 20 Stefania di SERAFINO
Bounded rationality and incomplete contracts

1995, 19 Adalgiso AMENDOLA, Floro E. CAROLEO, Maria Rosaria GAROFALO
Istituzioni, mercato del lavoro e decentramento delle decisioni.

1995, 18 Niall O’HIGGINS
Why did the youth training scheme reduce the wages of young people? A story of human capital formation, reservation wages and job offers.
1994, 17 Antonio CARDONE
Misure di efficienza: alcuni aspetti teorici

1994, 16 Maria Rosaria GAROFALO, Luisa ZANCHI
Neo-corporativismo, centralizzazione e dispersione inter-settoriale dei salari.

1994, 15 Sergio DESTEFANIS

1994, 14 Marcello D'AMATO
Tariffs for a foreign industry with market power under incomplete information on demand

1994, 13 Raul DE LUZENBERGER, Cesare IMBRIANI, Giancarlo MARINI
Sustainability Issues in the process of European Integration

1994, 12 Riccardo MARSELLI, Antonio CARDONE
Interdipendenza tra regioni: un'analisi su dati di Panel

1993, 11 Adriana BARONE, Concetto Paolo VINCI
Dilemma del prigioniero e persistenza della disoccupazione involontaria

1993, 10 Maria Rosaria CARILLO
Mutamenti strutturali ed offerta di lavoro.

1993, 9 Niall O'HIGGINS
The effectiveness of YTS in Britain: an analysis of sample selection in the determination of employment and earnings

1993, 8 Giuseppe CELI
Politiche valutarie ed integrazione commerciale: l’esperienza dello SME negli anni ‘80

1992, 7 Paolo COCCORESE
Attività innovativa e configurazione industriale

1992, 6 Maria Rosaria GAROFALO, Gian Luigi CORINTO
La Razionalità dell’Allocazione del Tempo di Lavoro in Agricoltura. Con un’Applicazione Empirica ad un Sistema Locale attraverso la PL.

1992, 5 Adalgiso AMENDOLA, María SCATTAGLIA
Disoccupazione e Tassi di Attività nel Mezzogiorno

1992, 4 Floro Ernesto CAROLEO
La Disoccupazione Strutturale

1991, 3 Giovanni URGA
Dynamic Models of Labour Demand in the Italian Industrial Sector: Theories and Evidence from Panel Data
1991, 2 Adalgiso AMENDOLA
Teoria dei Contratti Impliciti. Rigidità del Salario e Disoccupazione

1991, 1 Guido CELLA
Sulla Integrazione Produttiva Interregionale: il Caso del Mezzogiorno