New management issues within the reformed Common Fisheries Policy: implementation and socio-economic impacts

28th – 30th April 2015, University of Salerno, Italy

AN APPLICATION OF LIFE-CYCLE THEORY TO THE WEST OF SCOTLAND COD FISHERY

Dr PHILIP RODGERS
phil@erinecon.com
Gordon-Schaefer - stable bionomic equilibrium

Why should economic and biological equilibrium be achieved simultaneously?

A fish stock may be a harvestable resource even without reproduction and growth
\(\pi = \text{profit} \)
\(\bar{p} = \text{exogenous price} \)
\(q_e = \text{equilibrium output} \)
\(c = \text{costs (opportunity)} \)

The Economic Equilibrium Condition
\[
\pi(t) = \bar{p}q_e(t) - c(t) = 0 \tag{1}
\]

where
\[
c(t) = \gamma k(t) \tag{2}
\]

\(k = \text{index of capital employed} \)
\(\dot{B} = \text{change in the fish stock} \)

and a Production Function
\[
q(t) = \alpha_0 \dot{B}(t)^{\alpha_1} k(t)^{\alpha_2} \tag{5}
\]
\[\pi(t) = \bar{p} q_e(t) - \gamma k(t) = 0 \]

\[q(t) = \alpha_0 \dot{B}(t)^{\alpha_1} k(t)^{\alpha_2} \]

\[\gamma = \frac{p(0)q_e(0)}{k(0)} \] \hspace{1cm} (3)

\[k(t) = \frac{p(t)q(t)}{\gamma} \] \hspace{1cm} (4)
\[\pi(t) = \bar{\rho} q_e(t) - \gamma k(t) = 0 \]
\[q(t) = \alpha_0 \dot{B}(t)^{\alpha_1} k(t)^{\alpha_2} \]
\[\dot{B}(t) = \gamma \left(\frac{q(t)}{\alpha_0 k(t)^{\alpha_2}} \right)^{\frac{1}{\alpha_1}} \]
\[(5a) \]
\[B(t) = \int_{i=t}^{T} \dot{B}(t) \, dt \]
\[(6) \]
The Life-Cycle in Open-Access of the West of Scotland Cod Fishery

AN APPLICATION OF LIFE-CYCLE THEORY TO THE WEST OF SCOTLAND COD FISHERY
\[\pi(t) = \bar{\rho} q_e(t) - \gamma k(t) = 0 \]

\[q(t) = \alpha_0 \dot{B}(t)^{\alpha_1} k(t)^{\alpha_2} \]

\[SW = \int_0^T (q(t)D(q(t)) - q(t)S(q(t)))e^{-rt}dt \] \hspace{1cm} (7)

\[D = \text{demand curve} \]

\[S = \text{short run supply curve} \]
The Results

\[\gamma = 5.06m \]
\[\alpha_0 = 5.144 \]
\[\alpha_1 = 0.91 \]
\[\alpha_2 = 0.67 \]

€7,711m at 2011 prices

Correlation Coefficient = .9742
Mean Percentage Difference = 6.01%
Percentage Standard Deviation = 27.62%
AN APPLICATION OF LIFE-CYCLE THEORY TO THE WEST OF SCOTLAND COD FISHERY